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ABSTRACT: In this paper, we investigate various numerical strategies to
compute the direct space polarization energy and associated forces in the
context of the point dipole approximation (including damping) used in
polarizable molecular dynamics. We present a careful mathematical analysis
of the algorithms that have been implemented in popular production
packages and applied to large test systems. We show that the classical
Jacobi Over-Relaxation method (JOR) should not be used as its
convergence requires a proper value of the relaxation parameter, whereas
other strategies should be preferred. On a single node, Preconditioned
Conjugate Gradient methods (PCG) and Jacobi algorithm coupled with
the Direct Inversion in the Iterative Subspace (JI/DIIS) provide reliable
stability/convergence and are roughly twice as fast as JOR. Moreover, both
algorithms are suitable for massively parallel implementations. The lower
requirements in terms of processes communications make JI/DIIS the method of choice for MPI and hybrid OpenMP/MPI
paradigms for real life tests. Furthermore, using a predictor step as a guess along a molecular dynamics simulation provides
another inexpensive, yet very effective, form of convergence acceleration. Overall, two to three orders of magnitude in time can
be gained compared to the initial JOR single node approach to the final PGC or JI/DIIS parallel one combined with the
predictors MD refinements. Such a speedup traces a new route for the high performance implementation of polarizable
molecular dynamics and therefore extends the applicability of the technique as it will facilitate future multiscale QM/MM/
continuum computations.

1. INTRODUCTION

In recent years, the development of Anisotropic Polarizable
Molecular Mechanics1−4 (APMM) has been of prime
importance as the methods have reached the ability of treating
small proteins. Among the various strategies employed to deal
with polarization, fluctuating charges approaches5−9 and Drude-
type10,11 models have been shown to scale reasonably well from
the computational point of view due to the relative simplicity of
their functional form that retains a point charge description of
the electrostatics. For methods going beyond the point charge
approximation, one has to deal with distributed multipoles and/
or with Hermite Gaussian-based distributed densities. For such

methods, polarizability is usually included through the point
dipole approximation, which has been the most popular
strategy as it ensures control on the polarization. Force fields
such as SIBFA,3 EFP,12 or AMOEBA13,14 use this technique in
conjunction with damping functions to avoid the short-range
polarization catastrophe.15−17 While such polarizable force
fields are really robust and ensure the capability to get
transferable and quantitative results,3 as compared to ab initio
energy calculation, the evaluation of the induced point dipoles
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still represents a computational bottleneck for polarizable force
fields, as it requires to solve a linear system whose dimension is
very large, being three times the number of polarizable sites
(i.e., bearing polarizability). Such an issue has been rather little
addressed by the community from a numerical point of view,
with the noteworthy exception of a paper by Skeel and Wang18

that was following the pioneering work of Sagui and Darden
dedicated to PME.19 However, if one is not able to find efficient
and massively parallel algorithms to deal with modern
computers, the future applicability of polarizable force fields
will remain limited despite their advantages, their natural
coupling with quantum mechanics (including QM/
MM11,20−25), and their applicability to complex systems
encompassing charged molecules, metals, heterogeneous bio-
logical systems, and difficult liquids such as water. Fortunately,
the machinery in place has been well studied by applied
mathematicians, and mature and robust solutions exist. The
purpose of this paper, which is the first of a series, is to review
the numerical problem, analyze it thoroughly and propose
iterative procedures, which allow for the scalable evaluation of
both the polarization energy and of the relative forces to
perform numerically stable molecular dynamics (MD) simu-
lations relying on solid applied mathematics. The algorithms
presented here are the basis for a new, incoming, massively
parallel, implementation of both the SIBFA and AMOEBA
force fields within the Tinker26 and FFX27,28 packages.
In polarizable MD, two frameworks are possible to deal with

the electrostatic and polarization interactions: (i) periodic
boundary condition simulations, the electrostatics being
normally treated by using the Particle-Mesh Ewald (PME)
approach19,29,30 that requires a reciprocal space evaluation of
the induced dipoles or (ii) nonperiodic simulations using
continuum solvation models,31−35 where only direct space
computations are performed to evaluate the induced dipoles
and the polarization energy. This first paper addresses the
second point in tandem with a new fast algorithm to perform
simulation in a polarizable continuum solvent, described by the
Conductor-like Screening Model36 (COSMO), for which an
algorithm fast enough to be employed in MD simulations
(ddCOSMO) has been recently proposed by some of us.37,38

Indeed, with a significantly fast evaluation of the continuum
energy and derivatives, the evaluation of the induced dipoles of
the MM system can easily become the real bottleneck of the
overall computation. In particular, as the scaling of the
ddCOSMO algorithm is linear with respect to the size of the
system, while the evaluation of the polarization energy is
quadratic (however, with a much smaller proportionality
factor), the optimization and parallelization of the evaluation
of the polarization energies and forces are a required step to
develop a multiscale strategy. This remains true also when the
APMM/Continuum approach represents the classical part of a
QM/MM computation. This paper addresses such a task,
providing a proof of concept of effectiveness on modern
computers, and is organized as follows. In Section 2, the
polarization model is presented in both its traditional and
variational formulations, and the forces are derived. In Section
3, the properties of the polarization matrix are discussed, and
several iterative procedures are presented and analyzed. In
Section 4, several numerical examples are illustrated to show
the performances of the various algorithms presented. Finally,
in Section 5, some conclusions are drawn and some
perspectives given.

2. EVALUATION OF THE POLARIZATION ENERGY
AND OF ITS DERIVATIVES: THE NUMERICAL
PROBLEM
2.1. Classical Models for Polarization Energies.

Notation. Throughout this paper, we will use the following
notation. We will indicate vector quantities with an arrow if the
vectors are in 3 and with bold font if they represent a
collection of three-dimensional vectors. For instance, μ will be a
3M-dimensional column vector (μ⃗1

T,..., μ⃗M
T )T, where each μ⃗i =

(μi
x,μi

y,μi
z)T is a three-dimensional column vector. We will use

Latin indexes (e.g., i, 1 ≤ i ≤ M) as a subscript to refer to a
particular atom (with index i) and Greek indexes as superscripts
to indicate the Cartesian components of a vector, so that μi

α will
be the α-th Cartesian component of the dipole associated with
the i-th atom.
In this section, we will discuss the polarization equations

according to the polarizable point dipoles model and to the
smeared Thole’s model, which is used to avoid the short-range
polarization catastrophe.16,17 Thole’s model has been recently
widely used in the context of AMOEBA,13,14 as well as of other
polarizable force fields, including the ones used for QM/MM
simulations.23−25 In a dipole-based polarizable force field, the
parameters describing each atom’s electrostatic properties are a
collection of static multipoles and a polarizability, which is a
rank 2 symmetric tensor describing the linear response of such
an atom to an external electric field. Depending on the force
field, the static multipoles can include either only a point charge
or multipoles up to the quadrupole. For the sake of generality,
in this communication, we will assume that each atom i is
endowed with point charge qi, static point dipole μ⃗s,i, static
point quadrupole Θi, and polarizability αi. Notice that the static
dipole and quadrupole and, if not isotropic, the polarizability,
are vector or tensor quantities, and to define the electrostatics
of a molecule, each atomic term has to be rotated in the lab
frame by defining a local frame in terms of the positions of
some neighboring atoms. This will be discussed in full detail in
Appendix B.
The static multipoles create, at each atom i, an electric field E⃗i

that is responsible for an induced dipole μ⃗i, the unknown of the
polarization problem, in such a way that the (favorable)
interaction between the induced dipoles and the inducing field
is maximized, while both the work to polarize each site and the
repulsion between the induced dipoles are minimized. In other
words, the electrostatic equilibrium is reached when the total
polarization energy μ( ) is minimized, i.e.,

μ=
μϵ
min ( )min N (1)

where as a first classical model, the expression of the energy
is

∑ ∑ ∑ ∑μ α μ μ μ μ= − + +α α αβ α β αβ α β

= =

−

= ≠

E T
1
2

[ ]
1
2i

N

i i
i

M

i i i
i

M

j i
ij i j

1 1

1

1

(2)

Each one of the three terms appearing in eq 2 has a well-
defined physical meaning: the first represents the dipoles-field
interaction, the second the polarization self-energy and the
third the interaction between induced dipoles. Here, the
inducing field at each atom i is

∑ μ= + + Θα α αβ β αβγ βγ

≠

E T q T Ti
j i

ij j ij s j ij j,
(3)
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where we use Einstein’s summation convention on Greek
indexes α, β...,

= ∂
∂

= − = ∂
∂

= ∂
∂

α
α

α
αβ

α
β αβγ

α
βγT

r r

r

r
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r
T T

r
T

1
, ,ij

i ij

ij

ij
ij

i
ij ij

i
ij3

(4)

ri⃗j = ri⃗ − rj⃗ is the vector pointing from atom j to atom i, and rij =
|ri⃗j| is its length.
2.2. Damping Scheme for the Energy. The matrices

defined in eq 4 can become highly singular when two atoms get
too close to each other. In this circumstance, the energy and the
magnitude of the induced dipoles would diverge, leading to the
so-called polarization catastrophe. A possible way to avoid such
an unphysical behavior has been first introduced by Thole in his
1981 paper.16 Thole proposes to look at the induced dipoles
not as point dipoles but as exponentially smeared charge
distribution, a choice that finds a strong support in the
quantum mechanical description of the electronic density. A
comprehensive and detailed discussion on the possible damping
schemes and on their advantages can be found in ref 17. Here,
we will limit ourselves to Thole’s original exponential damping
scheme, which can be implemented by replacing the Coulomb
interaction with a damped Coulomb interaction:

λ=α αu T( )ij ij ij3 (5)

where

λ = − −u e( ) 1ij
au

3
ij
3

(6)

and uij = rij/(⟨αi⟩⟨αj⟩)
1/6 is the effective distance as a function of

the averaged polarizabilities of sites i and j; ⟨αi⟩ = 1/3 tr αi.
Other damping schemes can be obtained by replacing the
definition of λ3 with a different one. Here, a is a nondimen-
sional parameter that determines the strength of the damping.
Higher order interaction tensors can be obtained by differ-
entiating eq 5. The complete expressions are reported in
Appendix A. The energy d (d as damped) for the Thole’s
polarizable dipoles is defined as

∑ ∑ ∑ ∑μ α μ μ μ μ= − + +α α αβ α β αβ α β

= =

−

= ≠

E
1
2

[ ]
1
2d

i

N

i i
i

M

i i i
i

M

j i
ij i j

1 1

1

1

(7)

where

∑ μ= + + Θα α αβ β αβγ βγ

≠

E qi
j i

ij j ij s j ij j,
(8)

and the dipoles are obtained by minimizing the functional
defined in eq 7 with respect to the dipoles

∑
μ

α μ μ
∂
∂

= + − =α
αβ β αβ β α−

≠

E[ ] 0d

i
i i

j i
ij j i

1

(9)

We can recast eq 9 in a more compact form by introducing the
3M -dimensional matrix T, which we will refer to as the
polarization matrix, according to

α

α

α

= ⋱

⋮ ⋮ ⋮

−

−

−

⎛
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(10)

where the ϵ ×ij
3 3 blocks are defined in Appendix A, and the

3M -dimensional vectors
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which allow us to write the polarization linear system as

μ =T E (12)

and the polarization energy functional as

μ μ μ= −† †T E
1
2d (13)

Note that the matrix T is symmetric.
2.3. Analytical Derivatives of the Polarization Energy.

The variational formulation makes the derivation of the forces
particularly easy,39 as it is possible to exploit the following chain
rule

μ
μ=

∂
∂

+
∂
∂

· ∂
∂α α αr r r

d
d

d

k

d

k

d

k (14)

It is crucial to observe that the second term on the right-hand
side of eq 14 contains the derivatives of the energy with respect
to the induced dipoles, which at the stationary point vanish;
therefore, only the explicit derivatives of the energy need to be
computed and the forces will be

= −
∂
∂

α
αF

rk
d

k

This can be seen as a classical equivalent to the Hellmann−
Feynman theorem for variational wave functions. By expanding,
we get
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1 (15)

The first term in eq 15 involves the derivatives of the electric
field. There are two families of contributions arising from this
term: explicit ones, which are to be assembled via the
derivatives of the interaction matrices, and implicit ones,
which depends on the rotation used to define the static dipoles
and quadrupoles in the lab frame starting from their values in a
proper local frame. For the second contributions, let Ri be the
rotation matrix associated with the local to global frame
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transformation, i.e., the matrix that has for columns the
coordinates of the basis of the local frame in the global frame
basis. A variety of choices for the definition of the local frame,
together with the associated rotation matrices and their
derivatives, is reported in Appendix B. A documented Fortran
routine that computes all the aforementioned quantities is also
included in the Supporting Information. Any vector vi⃗ or tensor
Mi defined in the local system is expressed, in the global frame,
as respectively

⃗ = ⃗ = =− †v R v M R M R R M R,i i i i i i i i i i
0 0 1 0

where we have exploited the fact that as both the local and the
lab frames are orthonormal Ri is an orthogonal matrix. As
already mentioned, such quantities include static point dipoles
and quadrupoles, as well as the atomic polarizability tensors.
While the parameters do not depend on the positions of the
various atoms, the rotation matrices do, and the forces will
therefore include contributions due to the derivatives of R,
sometimes improperly referred to as a torque. Here, we give the
expression of such a contribution for the static dipole and for
the static quadrupole to provide an example for both vector and
tensor quantities

μ
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∂

∂
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∂

∂Θ
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(16)

The second term in eq 15 is only present if the atomic
polarizabilities are anisotropic and need to be rotated in the lab
frame. For isotropic (i.e., scalar) polarizabilities, there is no
rotation matrix contribution. Finally, the third term involves the
derivatives of the αβ

ij matrix

δ δ
∂
∂

= −
βγ

α
αβγ

r
( )ij

k
ik jk ij

(17)

3. NUMERICAL PROPERTIES AND ITERATIVE
SOLUTION OF THE POLARIZATION EQUATIONS:
FROM CHEMISTRY TO MATHEMATICS
3.1. Some General Considerations. In this section, we

will discuss some possible numerical procedures to solve the
polarization equation eq 12 in a robust and efficient way. For
large systems, iterative procedures are mandatory, as the N( )3

matrix inversion becomes rapidly infeasible. Notice that as
iterative solution schemes rely on matrix−vector multi-
plications, fast summation techniques29,40,41 can be involved
in the procedure. In this paper, we will not deal with such
techniques; nevertheless, all the considerations made in this
section also apply when such techniques are used. Some of the
aspects of the possible iterative solutions were discussed by
Wang and Skeel in a recent paper.18 Indeed, Wang and Skeel
showed in the context of PBC simulations that iterative
methods alternative to the traditionally implemented ones
could be successfully used to accelerate convergence of the
polarization equations. In particular, they suggested the use of a
preconditioned conjugate gradient iterative scheme, which we
will also analyze in this section. Iterative methods can be
grouped in two main families: stationary methods, like Jacobi
Iterations (JI), Gauss−Seidel iterations (GS), or the Jacobi
Over-Relaxation method (the latter being currently the most
used one in the context of the AMOEBA force field), and
Krylov subspace methods, such as the Conjugate Gradient

(CG), Preconditioned CG (PCG), or the Generalized Minimal
RESidual (GMRES) methods. An intermediate scheme can be
obtained by coupling the JI with Pulay’s direct inversion in the
iterative subspace (DIIS) method; such a strategy is especially
interesting because it maintains the conceptual simplicity of JI
while enjoying superior convergence properties42 or even
ensuring convergence in case JI may not converge.
The JI method is probably the simplest iterative procedure to

solve a N-dimensional linear system Tx = b . Let D be the
diagonal matrix whose elements are the diagonal elements of T,
and let O = D − T. Jacobi iterations are defined as follows

= +− − −D O D bx xn n[ ] 1 [ 1] 1 (18)

It is easily shown that JI converge if the spectral radius
ρ(D−1O), i.e., the modulus of the eigenvalue with the largest
modulus, of the iteration matrix D−1O is smaller than 1, and the
convergence rate is as ρ(D−1O)n. This means that if the largest
eigenvalue of D−1O has a modulus larger or equal to 1, the JI
will not converge. Furthermore, if one eigenvalue is of a
modulus lower but close to 1, convergence will be very slow.
Jacobi iterations are granted to converge if T is strictly diagonal
dominant, i.e., if for each row i, Tii > ∑jTij. We will show
through an example that this is often not the case for the
polarization problem. A simple way to improve JI (or GS)
iterations is to mix at each step the solution with the vector
obtained at the previous step by setting

ω ω̃ = + − ̃ −x x (1 )xn n n[ ] [ ] [ 1] (19)

with

= ̃ +− − −D O D bx xn n[ ] 1 [ 1] 1

This method is known as the Jacobi Over-Relaxation (JOR)
when based on the Jacobi Iterations, Successive Over-
Relaxation (SOR) when based on Gauss−Seidel iterations,
and Symmetric Successive Over-Relaxation (SSOR) when
applied to the symmetric Gauss-Seidel iterations. It is easily
proven that for a positive definite symmetric matrix there
always exists some relaxation parameter ω with 0 < ω < 2/
ρ(D−1O), such that the JOR iterations converge; however, the
optimal parameter ωopt depends on the spectral properties of
the specific matrix and is therefore not universal. Again,
convergence is assured if T is strictly diagonal dominant but
not for the general case.
Krylov subspace methods are more complex than fixed point

methods but enjoy superior robustness as they are always
granted to converge in the absence of rounding errors when
applied to positive definite matrices. Their convergence rate
depends again on the spectral properties of the T matrix. For
symmetric positive definite matrices, the optimal choice is
achieved by the conjugate gradient method, which corresponds
to a CG minimization of the functional

−† †T b
1
2

x x x

which for the linear system associated with the induced dipoles
corresponds to the energy functional defined in eq 13. It is
apparent how having a symmetric and positive definite matrix is
mandatory to use the CG algorithm. The functional would not
be bounded from below if the matrix had any negative
eigenvalue, and its gradient would not be the residual of the
linear system if it was not symmetric. Notice, therefore, that if
the matrix T is computed via numerical techniques that are
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subject to numerical errors such that its symmetry could be
spoiled, the CG algorithm might not be the optimal choice. In
those cases, CG (and PCG) are generally replaced by GMRES
iterative algorithms that recover the good convergences
properties. The CG method is easy to implement and requires
one to compute one matrix−vector product per iteration, plus
one matrix−vector product to compute the starting direction.
Its convergence rate depends on the matrix condition number
κ(T), i.e., the ratio between its largest and smallest eigenvalues,
according to

κ

κ
∥ − ∥ ≤

−
+

∥ − ∥
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

T

T
x x 2

( ) 1

( ) 1
x xn

T

n

T
[ ] [0]

(20)

where x is the exact solution and

∥ ∥ = †v v TvT

is the energy norm. The CG method exhibits nonoscillating
(monotonic) convergence, meaning that the energy norm of
the solution will decrease monotonically at each iteration. If the
condition number is large, it is recommended to use a
preconditioner to improve convergence. The preconditioned
conjugate gradient (PCG) method solves the modified linear
system

=− −P T P bx1 1 (21)

where the matrix P−1 should be close to T−1 but easy to
compute. The simplest choice for the preconditioner is to use
the inverse of the diagonal elements of T. This diagonal
preconditioner has a negligible impact on the overall computa-
tional cost and can already be quite effective in clustering the
eigenvalues and improving the convergence properties. Of
course, ad hoc preconditioners can be proposed that better take
into account the understanding of the phenomenon under
consideration. However, for the polarization problem, the
simple generic choice of the diagonal turns out to give
sufficiently good results.
As a final numerical procedure to solve a linear system of

equations, we report the use of Pulay’s DIIS43,44 to accelerate
(or even get) the convergence of JI. The JI/DIIS method can
be considered as a Krylov subspace method,42 where the
solution at iteration n is extrapolated as the linear combination
of all the solutions at the previous m steps; the coefficients of
the extrapolation being determined according to Pulay’s
procedure and using the residual as an error. The choice of
m is in general critical, as large values correspond to better
convergence properties but also require more storage and more
CPU work for the extrapolation. In the specific case, however,
convergence is usually reached in a number of iterations small
enough to keep all the iterations in memory (we use m = 20,
usually convergence is achieved in a smaller number of
iterations). In particular, Rohwedder and Schneider42 estab-
lished a connection between the JI/DIIS method used for linear

Figure 1. Eigenvalues of the polarization matrix for Ubiquitin, using the AMOEBAbio09 parameters (including damping), without (left) and with
(right) preconditioning.

Figure 2. Eigenvalues of the polarization matrix for Ubiquitin without Thole’s damping, using the AMOEBAbio09 parameters (left) or with the
AMOEBAbio09 polarizabilities scaled by 1/3 (right).
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systems and the popular GMRES method, of which the JI/DIIS
inherits the nice convergence behavior. In all our numerical
experiments, the JI/DIIS algorithm showed convergence rates
that are mostly identical to the ones of the preconditioned CG;
on the other hand, such a methodology is much less sensitive to
small errors that might spoil the symmetry of the matrix and
maintains the simplicity of the JI scheme. However, the DIIS
extrapolation has a small cost, which scales as m( )3 as one has
to solve a linear system to compute the m extrapolation
coefficients, and for 2Nm, more memory is required.
3.2. Application to the Polarization Problem. In order

to choose a convenient algorithm to solve the polarization
equations, it is fundamental to better understand the properties
of the polarization matrix T. In Figure 1, we show the
distribution of the eigenvalues of the polarization matrix T for a
small protein, Ubiquitin (1232 atoms), as obtained by using the
AMOEBAbio0945 force field and Thole’s damping, with and
without the diagonal preconditioning. The structure of
Ubiquitin can be found in the Supporting Information. We
also report in Figure 2 the eigenvalues of such a matrix without
Thole’s damping, either with the AMOEBAbio09 polar-
izabilities and with the same polarizabilities scaled by a factor
of 1/3. Furthermore, in Figure 3, we report the eigenvalues of
the JI matrix D−1O and of the JOR matrix Bw = ωD−1O + (1 −
ω)I, where D is the (block) diagonal matrix of the atomic
polarizabilities, O = D − T, and ω is the optimal relaxation
parameter (Figure 4). The spectral radius of the JOR matrix as
a function of the relaxation parameter is also reported in Figure
4. From the left panel in Figure 1, it is possible to see that the
matrix produced with the AMOEBAbio09 parameters and
Thole’s damping has no negative eigenvalue and is therefore
positive definitive. Moreover, the eigenvalues are clustered in a
small region, and the condition number is relatively small (κ =
13.64). The beneficial effect of the preconditioner is apparent
from the right panel of the same figure, as the eigenvalues of the
preconditioned matrix are clustered in a smaller interval and the
condition number is reduced to κ = 5.47 together with a better
repartition of the spectrum. CG convergence is expected to be
much faster thanks to the preconditioner [It follows indeed
from eq 20 that the reduction factor for the CG algorithm given
by the formula ρ = (κ(T))1/2 − 1/(κ(T))1/2 + 1 gives ρcg =
0.57, while for the PCG, the same expression is ρPCG = 0.4.].
The effect of the interaction model and of the parametrization
are sketched in Figure 2. The polarization matrix loses its

positivity if Thole’s damping is suppressed, making the CG
method unsuitable for the solution of the linear equations. A
scaling of the polarizabilities of a factor of roughly 1/3 is
necessary to restore the positivity. Notice, nevertheless, that the
eigenvalues are more scattered and that they cover a more
widespread range. The condition number for this matrix is
indeed 45.11, much larger than the condition number of the
nonpreconditioned Thole’s matrix.
The eigenvalues of the Jacobi Iteration matrix, reported in

the left panel of Figure 3, show that for the system chosen as an
example the JI would not converge. The spectral radius of the
matrix is indeed larger than 1 (ρ = 1.58). The effect of the
relaxation is apparent from the right panel of the same figure.
The eigenvalues are scaled and shifted to be between −1 and 1.
The choice of the relaxation parameter is critical to achieve or
improve convergence; the spectral radius of the matrix depends
sharply on it as shown in Figure 4. Notice how the spectral
radius remains high (ρ(Bω) ≃ 0.7), even for the optimal ω.

4. NUMERICAL RESULTS
Computational Details. The various algorithms proposed

have been implemented in a local version of the TINKER
package (MPI, OpenMP, and hybrid implementations) and in a
local version of FFX (OpenMP only). All the results shown
have been produced with TINKER. All the following numerical

Figure 3. Eigenvalues of the Jacobi iteration matrix (left) and of the JOR matrix (right) with the optimal damping parameter. Notice that the Jacobi
matrix coincides with the JOR matrix for ω = 1.

Figure 4. Spectral radius of the JOR matrix as a function of the
relaxation parameter.
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results were obtained on the SGI UV 2000 supercomputer of
the ICS (Institut du Calcul et de la Simulation, SU/UPMC
Paris-06), which is mainly made of 64 computational nodes,
each one of them being equipped with two Intel Xeon E5−
4650L CPUs with eight cores at 2.6 Ghz, associated with 256
GB of DDR3 DIMM RAM, reaching a total of 1024 cores.
Furthermore, the shared memory system of the machine uses
the SGI NUMAlink interconnect, making transfers at a peak
bandwidth of 12.5 Gb/s possible.
4.1. Single Node Comparison of the Various Algo-

rithms. In order to compare the performances of various
iterative solutions, we report in Figure 5 the root-mean-square
(RMS) norm of the appropriate vector (the increment for JOR
and JI/DIIS, the gradient for CG) with respect to the number
of iterations, as well as the norm of the error, i.e., the difference
between the various solutions at each iteration and the “exact”
solution, computed by matrix inversion (using the Cholesky
factorization). Ubiquitin is used as a test case, and convergence
is reached when the RMS of the increment (or gradient) is
smaller than 10−6 and the following guess

μ α⃗ = ⃗Ei i i
[0]

(22)

is common to each iterative solution. We recall that the αi are
the polarizability tensors given as parameters, and the E⃗i are the
electric field values created by the static multipoles at the
polarizable site i (eq 3). To avoid the quadratic storage
requirements, the matrix−vector products are always computed
on-the-fly. The polarization matrix T is never assembled and
stored. The Jacobi method, as is apparent from Figure 3, does
not converge for Ubiquitin and is therefore not reported. The
low performance of the JOR solver is consistent with the
considerations made in Section 3. Even by choosing an optimal
or close-to-optimal relaxation parameter, the spectral radius of
the iteration matrix remains close to 1. Let e[0] = μ[0] −μ[0] be
the error made with the initial guess. Any component of such a
vector lying along the eigenvectors of the JOR iteration matrix
that correspond to a close-to-one eigenvalue will be difficult to
annihilate, which explains the slow convergence (25 iterations
for residual of 10−6). A straightforward conjugate gradient
solver is enough to get better (17 iterations for a similar
accuracy) but still not satisfying performances. From the
analysis made in Section 3, we expect the effect of the
preconditioner to be highly beneficial and in particular to cut
the number of iterations by roughly 50%. This is confirmed in
this numerical experiment, as convergence is achieved in 11
iterations [It should be noticed that with the values previously

computed ρCG
17 ≃ ρPCG

11 .]. In addition, it is shown in the same
figure that the asymptotic rate of the PCG is much better
(actually almost twice better), and that is a consequence of the
better repartition of the spectrum as noticed in Figure 1.
Finally, the JI/DIIS solver performs almost as well as the

preconditioned conjugate gradient, achieving convergence in 13
iterations. It is our experience that such a solver usually takes
one or two iterations more than the preconditioned conjugate
gradient to achieve convergence, which makes it a competitive
and solid choice. We recall here that while both the JI/DIIS and
the CG methodologies need one (expensive) matrix−vector
multiplication per iteration, the CG also requires a matrix
vector multiplication to compute the starting direction. The
overall cost of the iterative solution is therefore roughly the
same for the two methods.

4.2. Parallel Implementation. Both the PCG and JI/DIIS
solvers are easily parallelized on shared memory architectures
via the OpenMP paradigm. We report the performance gain as
a function of the number of cores for both solvers and for the
computation of the forces in Figure 6, as computed on a SGI

UV 2000 machine. A cluster made of Ubiquitin and 2835 water
molecules (for a total of 9737 atoms, the structure can be found
in the Supporting Information) has been used for the following
computations. The scaling is particularly good in the “single-
node” region, i.e., within 16 processors, but it is still fair up to
48−64 cores. The Message Passing Interface (MPI) paradigm

Figure 5. Norm of the increment (or residual) and norm of the error along the iterations for Ubiquitin using various methods.

Figure 6. Parallel (shared memory) performance of the PCG and JI/
DIIS solvers and of the force evaluation on a NUMA architecture.
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can be exploited to achieve a more general parallel
implementation, which can be exploited also on cluster
architectures. The MPI implementation is straightforward.
The dipoles are uniformly distributed among the processes, and
at each step of the iterative solver (PCG or JI/DIIS), a certain
number of communications and reduction operations are
needed. For the PCG, once the initial direction is computed,
two vectors need to be sent to all the other processes per step:
the new solution of the linear system and the descent direction.
Moreover, a few very fast reduction operations are needed. The
implementation is even simpler for the JI/DIIS method because
only one vector, the updated solution, is to be sent at each
iteration; again, a few reduction operations are needed to
compute the increment and the JI/DIIS matrix.
In both cases, the computational bottleneck lies in the

communications, as they grow quadratically with the number of
processes. Notice that the good performances of the OpenMP
code can be combined with the more general MPI one in a
hybrid fashion, which with respect to the pure MPI
implementation can exploit the same number of cores while
reducing the number of MPI processes and hence the number
of communications. This is a particularly good strategy when a
cluster architecture is available, as it allows one to minimize the
number of (slow) communications through the network while
still exploiting all the cores of each node. We report in Figure 7
the scaling performances of both the pure MPI implementation

and the hybrid MPI/OpenMP one. The same Ubiquitin−water
cluster has been used as a test case. The performances of the
MPI implementation are overall good; as expected, the JI/DIIS
solver performs slightly better than the PCG one, especially
when the hybrid MPI/OpenMP code is used. With respect to
the pure OpenMP implementation, where the breakdown is
observed after 64 cores, the scalability of the code is overall
better, and the number of exploited cores can be doubled. Our
tests show the breakdown after 128 cores for the MPI
implementation and to 512 cores for the hybrid MPI/OpenMP
one; this latter result is particularly promising as the size of the
system used as a test case begins to become small with respect
to the number of atoms. The overall scaling properties of the
code are remarkable. A comparison between the OpenMP,
Hybrid, and pure MPI implementations in the 1−64 cores
regime is reported inFigure 8. While in the “single node”
region, the codes perform in a similar way, the superiority of
the MPI and hybrid implementations becomes apparent
beyond 32 cores.

4.3. Extension to Molecular Dynamics. In a classical
molecular dynamics simulation, a classical trajectory is obtained
by integrating the classical equations of motion for a set of
atoms moving on the potential energy surface provided by the
force field. Let U(r) be such a potential, where the vector r
collects the coordinates of all atoms. The dynamics of the
system is described by Newton’s equation of motion

Figure 7. Parallel performance of the PCG and JI/DIIS solvers in a pure MPI (left panel, up to 128 cores) or hybrid MPI/OpenMP (right panel, up
to 512) fashion. The Hybrid computation has been performed by assigning eight threads per MPI process.

Figure 8. Pure MPI, Pure OpenMP, and Hybrid MPI/OpenMP implementations compared for both the PCG (left) and JI/DIIS (right) solvers.
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∀ ⃗̈ = −∇i m r U r( )i i i (23)

where we use Newton’s notation for time derivatives, and mi is
the mass of the i-th particle. Such equations are integrated by
means of the Velocity Verlet46,47 algorithm, which introduces a
discretization of the time variable into finite time steps. For an
isolated system, i.e., in the microcanonical ensemble, the total
mechanical energy, defined as

= ̇ +E E Ur r( ) ( )kin

is conserved. The quality of the numerical integration can be
judged by how well such a requirement is enforced by the
approximate trajectory. Clearly, energy conservation is affected
by the quality of the solution to the polarization equations.
Several parameters of the MD simulation can affect the energy
conservation, the most influential being the time step used for
the numerical integration. If a polarizable force field is used, the
quality of the solution to the polarization equations plays an
important role too. In the following, we investigate how the
initial guess for the induced dipoles and the convergence
threshold used for the iterative solution affect the energy
conservation. Among the various guesses, we examine (i) the
use of eq 22 (“direct guess”), (ii) the use of the solution to the
polarization equations at the previous step (“previous guess”),
and (iii) the use of the predictor step of Kolafa’s always stable
predictor−corrector algorithm48 (“predictor guess”). The use

of a predictor has been suggested also by Wang and Skeel.18

Notice that we are not using Kolafa’s integrator but only his
predictor in order to provide a guess for the iterative solvers.
For each guess, we perform several short MD simulations
(20,000 steps) with different convergence thresholds, and we
compare the total energy profiles, using both the PCG and the
JI/DIIS solvers. We use a small time step (0.25 fs) to limit its
effects on the simulation and focus on the effects of the quality
of the dipoles. All the simulations were performed using
Ubiquitin as a test case.
The results for the direct guess are reported in Figure 9. The

energy conservation is very good even for the sleaziest (10−4)
threshold for the RMS norm of the residual for both solvers.
The direct guess, however, is not an optimal choice, as it does

not exploit the information that is available during the
simulation to provide a good approximation to the solution.
The previous guess is already a better approximation, as it is
reasonable that the induced dipoles do not change abruptly at
each simulation step. The energy conservation results for the
previous guess are reported in Figure 10. While convergence is
achieved quicker than with the direct guess, the stability of the
simulation is affected, and the sleaziest convergence thresholds
produce an unsatisfactory energy conservation. At least a 10−6

threshold is required to produce a stable simulation. Notice that
the two solvers behave similarly, with the JI/DIIS being slightly
more stable. The predictor guess uses the information of the

Figure 9. Energy profile of a short MD simulation of Ubiquitin using the direct guess for both the PCG (left) and JI/DIIS (right) solvers for
increasing convergence thresholds (threshold is 10−x, with x being reported in the key).

Figure 10. Energy profile of a short MD simulation of Ubiquitin using the previous guess for both the PCG (left) and JI/DIIS (right) solvers for
increasing convergence thresholds (threshold is 10−x, with x being reported in the key).
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previous six steps to extrapolate a good approximation of the
dipoles. The energy conservation results for such a guess are
reported in Figure 11. The simulation becomes stable for a
convergence threshold of 10−5. This last guess represents an
optimal choice, as it requires a negligible computational
effortthe storage of six dipole vectors and their linear
combination while ensuring a fast convergence and a nice
stability. Both solvers behave remarkably, and the tighter
convergence required to achieve stability with respect to the
one required by the direct guess is compensated by the smaller
number of iterations required to solve the linear system. To
better appreciate the effect of the guess on the number of
iterations, we report in Table 1 the number of iterations needed

to reach convergence as a function of the threshold for the
three guesses, both for the PCG and JI/DIIS solvers. The
simulation uses a more realistic time step (1 fs), and represents
therefore a “real-life” situation. From the previous analysis, it
emerged that the direct guess always produces stable
trajectories. A convergence threshold of 10−4, which corre-
sponds to six iterations for the PCG solver and eight for JI/
DIIS is sufficient. A 10−5 threshold, which corresponds to two
additional iterations for either solver, can be used for a better
energy conservation. With the previous guess, a 10−6 threshold,
corresponding to eight iterations for the PCG and nine for JI/
DIIS is required. For the PCG, a convergence threshold of 10−7

can be used for better energy conservation. Such a guess does
not represent a competitive choice with respect to the direct
one, especially for the PCG solver. The situation is different if
the predictor guess is employed. The simulation becomes stable
with a 10−5 convergence threshold (3−4 iterations for the

PCG, 5 for the JI/DIIS), which might be increased to 10−6 for
greater precision using the PCG solver (6 iterations). The gain
produced by the convergence acceleration amply compensates
the tighter convergence requirements, making the computation
of the dipoles significantly (30% or more) faster with respect to
the direct guess, producing a trajectory of the same quality.
This is especially true if the JI/DIIS solver is used, as its
behavior is more stable with respect to the choice of the initial
guess. Finally, long-term stability is ensured by the use of a
symplectic integrator and when the predictor guess is used by
its time-reversibility properties.48 Such a behavior was
confirmed numerically, with long simulations showing no
apparent total energy drift and oscillation within ±1 kcal/mol.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we demonstrate that polarizable force field
computations can scale efficiently concerning the direct space
evaluation of the polarization energy and forces. Various
algorithms have been studied and compared and their
numerical stability discussed. If the JOR approach does not
ensure convergence without knowing the spectrum and should
not be retained being also relatively slow, both the PCG and JI/
DIIS approaches have shown to be mathematical sound offering
fast and guaranteed convergence. The two strategies appear
also viable for parallelization using both the Open-MP and MPI
paradigms (and associated hybrid implementation). However,
the JI/DIIS involves significantly less communication between
processes and appears more suitable for massively parallel
implementation. Moreover, in the context of a direct space
strategy presented in this paper, the simplicity of the further
coupling with a polarizable continuum method would grant the
capability of the polarizable point dipole approach to perform
multiscale QM/MM/continuum computations. Overall, with a
parallel implementation using the JI/DIIS approach, two orders
of magnitude in time have been gained compared to the serial
JOR initial implementation. To give an order of magnitude, the
time to compute the solution to the polarization equations for
the Ubiquitin−water cluster goes from more than 1 min with
the serial initial JOR code to roughly half a second with the
parallel JI/DIIS code using 128 cores, which is appropriate for
the size of the system. The time is further reduced roughly by a
factor of two during a MD simulation thanks to the use of the
predictor guess. An additional, non-negligible gain can be
obtained by using Kolafa’s predictor to compute a guess for the

Figure 11. Energy profile of a short MD simulation of Ubiquitin using the predictor guess for both the PCG (left) and JI/DIIS (right) solvers for
increasing convergence thresholds (threshold is 10−x, with x being reported in the key).

Table 1. Average Number of Iterations Needed To Reach
Convergence for the Direct, Previous, and Predictor
Guesses, as a Function of the Convergence Threshold, for
Both the PCG and JI/DIIS Solvers

PCG JI/DIIS

threshold direct previous predictor direct previous predictor

10−4 6 3.0 1.9 8 4.4 3.0
10−5 8 5.0 3.5 10 7.0 5.0
10−6 11 8.0 6.0 12 9.0 7.1
10−7 13 10.0 8.0 15 11.9 9.9
10−8 16 12.1 10.0 17 14.0 12.0
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iterative solution. In a practical point of view, the careful study
of the matrix T also should motivate chemists to derive new
force fields with parameters that ensure the proper variational
behavior of the polarization energy (resulting in no negative
eigenvalue in the matrix T!), in link with a meaningful choice of
the damping scheme, which profoundly modifies the polar-
ization matrix.
In that context, upcoming works will deal with several

aspects. First, we will extend such machinery to more complex
force fields such as SIBFA3 or GEM,25,49 still in the context of
the Tinker and FFX packages. Second, we will study the
behavior of the PCG and JI/DIIS in the context of periodic
boundary conditions where a massively parallel implementation
of the PME is required. Last, we will extend further the
scalability of the present approach in the context of our newly
developed dd-COSMO toward large-scale polarizable MD
simulations on peta- and hexa-scale computers, which will also
require the use of state-of-art linear scaling techniques to
compute matrix−vector products.

A. APPENDIX: EXPLICIT EXPRESSIONS OF THE
DAMPED COULOMB TENSORS

We report here for completeness the expression of the damped
Coulomb tensors, which are needed to compute the energy and
derivatives of the polarization energy. The (damped) dipole−
dipole and dipole−quadrupole interaction tensors are obtained
by differentiating once and twice eq 5

δ
λ λ= − +αβ αβ
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where the damping functions are
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Finally, to compute the derivatives of the electric field, a
further differentiation step is needed
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B. APPENDIX: ROTATION MATRICES AND THEIR
DERIVATIVES

In this appendix, we will detail the definition of three common
local frames used to rotate the atomic multipoles in the lab
frame. Troughout the appendix, we will use bold font to denote
vectors and standard font to denote the length of such vector,
so that v = |v|, for instance. Let i be the index of the atoms
where the multipoles are placed. Let also iz, ix, and iy be the
indexes of the atoms used to define the local frame with respect
to the global one. We will denote

ξ = −r riz i

η = −r rix i

ς = −r riy i

and characterize the unit vectors that define the local frame in
the global frame basis through these three vectors that point,
from the center where the multipoles are to two or three
neighboring atoms. For any two nonparallel vectors u and v, we
will introduce the orthogonal basis vectors ez = ez(u), ex =
ex(ez,v), and ey = ey(ez,ex) by

= =
− ·
− ·

= ×
u v

e
u

e
v v e e

v e
e e e,

( )

[ ( ) ]
,z x

z z

z
y z x2 2 1/2

(30)

A sketch of the definition of all the aforementioned
quantities can be found in Figure 12. In the following, we

present four ways to introduce a local frame by different choices
of u and v as a function of ξ, η, and ζ. Then, we will be able to
write the derivatives by exploiting a suitable chain rule. Notice
that the u vector defines the z direction, while the x axis lies on
the plane spanned by u and v (in particular, it is obtained by
Gram−Schmidt orthogonalization of v with respect to u), and
the y direction is the one orthogonal to the x,z plane.
• In the Z-then-X scheme (Figure 13), for each atom i, two

other atoms are used to define the local frame. The first one,
labeled iz, defines the direction of the z axis. The second one,
labeled ix, is used to define the x−z plane, and the x axis is
defined by Gram−Schmidt orthogonalization. More in detail, it
consists of the above procedure with the choice of u = ξ and v =
η, so that

ξ
ξ

=ez

Figure 12. Definition of the ξ, η, and ζ vectors (left panel) and of the u
and v vectors (right panel). Notice how the local frame is defined in
terms of u and V.
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• The Bisector scheme (Figure 13) defines the direction of
the z axis, given a central atom i and two atoms iz, ix, as the
bisector of the iz−i−ix angle. The x−z plane is the defined
using the ix atom, and the x axis is defined as usual by
orthogonalization. This consists of the above procedure with u
= ηξ + ξη and v = η, so that
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• The Z-Bisector scheme (Figure 14) uses the atom iz to
identify the z axis and the bisector of the ix−i−iy atoms to

define the xz plane. The x axis is always obtained by
orthogonalization. Again, u = ξ and v = ηζ + ζη, so that
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• Finally, the 3-Fold scheme (Figure 14) puts the z direction
along the sum of the vectors going from the central atom to ix,
iy, and iz, respectively. The x,z plane is then identified by such
vector and the one pointing from i to ix. Again, u = ηζξ + ξζη +
ξηζ and v = η, so that
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Here, we put u = ηζξ + ξζη + ξηζ and v = η.
B.1. Analytical Derivatives of the Rotation Matrices
We will here proceed to compute the analytical derivatives of
the three orthogonal vectors that define the rotation matrix. In
order to do so, we will exploit the following chain rules
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where j = i,iz,ix,iy. Each derivative consists of a term that does
not depend on the specific choice of the local frame, which is to
be contracted with the proper specific term. The general
contributions are, respectively
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where ϵαβγ is the Levi−Civita symbol. The specific terms follow
for the various definitions of the local frame
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Figure 13. Definition of the Z-then-X (left) and Bisector (right)
schemes.

Figure 14. Definition of the Z-Bisector (left) and 3-Fold (right)
schemes.
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(23) Curutchet, C.; Muñoz-Losa, A.; Monti, S.; Kongsted, J.; Scholes,
G. D.; Mennucci, B. J. Chem. Theory Comput. 2009, 5, 1838−1848.
(24) Caprasecca, S.; Curutchet, C.; Mennucci, B. J. Chem. Theory
Comput. 2012, 8, 4462−4473.
(25) Cisneros, G. A.; Piquemal, J.-P.; Darden, T. A. J. Phys. Chem. B
2006, 110, 13682−13684.
(26) Ponder, J. W. TINKER Molecular Modeling, Package V 6.2.
http://dasher.wustl.edu/tinker/ (accessed July 14, 2013).
(27) Schnieders, M. J.; Fenn, T. D.; Pande, V. S. J. Chem. Theory
Comput. 2011, 7, 1141−1156.
(28) Force Field X. http://ffx.eng.uiowa.edu/ (accessed November
14, 2013).
(29) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;
Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577−8593.
(30) Cisneros, G. A.; Piquemal, J.-P.; Darden, T. A. J. Chem. Phys.
2006, 125, 184101.
(31) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105,
2999−3093.
(32) Cramer, C. J.; Truhlar, D. G. Chem. Rev. 1999, 99, 2161−2200.
(33) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J.
Am. Chem. Soc. 1990, 112, 6127−6129.
(34) Brancato, G.; Rega, N.; Barone, V. J. Chem. Phys. 2006, 124,
214505.
(35) Rega, N.; Brancato, G.; Barone, V. Chem. Phys. Lett. 2006, 422,
367−371.
(36) Klamt, A.; Schuurmann, G. J. Chem. Soc., Perkin Trans. 2 1993,
799−805.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct401096t | J. Chem. Theory Comput. 2014, 10, 1638−16511650

http://pubs.acs.org
mailto:filippo.lipparini@courriel.upmc.fr
mailto:maday@ann.jussieu.fr
mailto:jpp@lct.jussieu.fr
http://dasher.wustl.edu/tinker/
http://ffx.eng.uiowa.edu/


(37) Cances̀, E.; Maday, Y.; Stamm, B. J. Chem. Phys. 2013, 139,
054111.
(38) Lipparini, F.; Stamm, B.; Cances̀, E.; Maday, Y.; Mennucci, B. J.
Chem. Theory Comput. 2013, 9, 3637−3648.
(39) Lipparini, F.; Scalmani, G.; Mennucci, B.; Cances̀, E.; Caricato,
M.; Frisch, M. J. J. Chem. Phys. 2010, 133, 014106.
(40) Greengard, L.; Rokhlin, V. J. Comput. Phys. 1987, 73, 325−348.
(41) Cheng, H.; Greengard, L.; Rokhlin, V. J. Comput. Phys. 1999,
155, 468−498.
(42) Rohwedder, T.; Schneider, R. J. Math. Chem. 2011, 49, 1889−
1914.
(43) Pulay, P. Chem. Phys. Lett. 1980, 73, 393−398.
(44) Pulay, P. J. Comput. Chem. 1982, 3, 556−560.
(45) Shi, Y.; Xia, Z.; Zhang, J.; Best, R.; Wu, C.; Ponder, J. W.; Ren,
P. J. Chem. Theory Comput. 2013, 9, 4046−4063.
(46) Verlet, L. Phys. Rev. 1967, 159, 98−103.
(47) Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J.
Chem. Phys. 1982, 76, 637−649.
(48) Kolafa, J. J. Comput. Chem. 2004, 25, 335−342.
(49) Piquemal, J.-P.; Cisneros, G. A.; Reinhardt, P.; Gresh, N.;
Darden, T. A. J. Chem. Phys. 2006, 124, 104101.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct401096t | J. Chem. Theory Comput. 2014, 10, 1638−16511651


