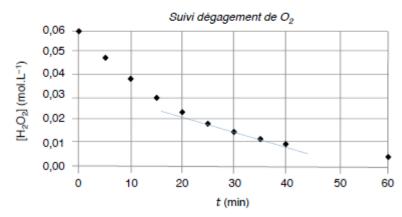
Elements de correction TD cinétique

Séance 9 exercice 1

• 3)

3) Les résultats de l'expérience sont indiqués dans le tableau suivant :

t (min)	0	5	10	15	20	25	30	35	40	60
V _{O2} (L)	0	0,16	0,27	0,36	0,44	0,5	0,54	0,59	0,61	0,68
C (mol.L ⁻¹)	0,06	0,0467	0,0375	0,030	0,0233	0,0183	0,0150	0,0108	0,0092	0,0033

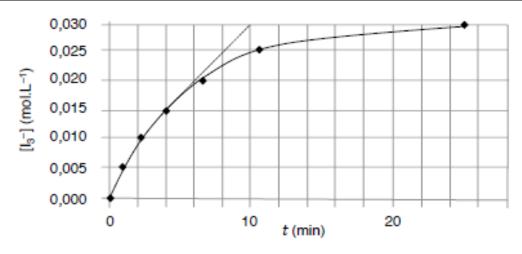


Séance 9 exercice 2

• 5)

5) Le nombre de moles d'ions I_3^- produites aux instants t_i où le retour de la coloration est observé est défini par : $(n_{I_3^-})_{t_1} = 0,0005 \times i$, d'où $[I_3^-]_{t_1} = \frac{0,005 \times i}{V_{total}} = \frac{0,005 \times i}{0,1}$ soit $[I_3^-]_{t_1} = 0,05 \times i$. On en déduit les valeurs et la courbe $[I_3^-] = f(t)$ suivantes :

t (min)	0,9	2,2	4,0	6,8	10,5	25
[l ₃ ⁻] (mol.L ⁻¹)	0,005	0,010	0,015	0,020	0,025	0,030



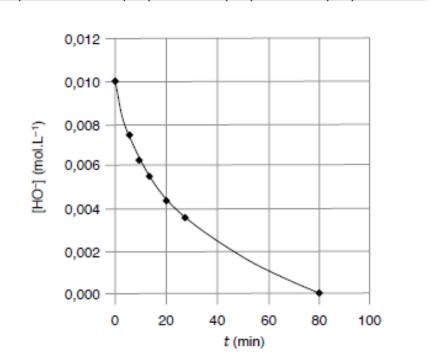
Séance 10 exercice 2

Exercice 2 : Détermination d'un ordre global de réaction

1) Tableau d'avancement en mol.L⁻¹:

	CH ₃ CO ₂ C ₂ H ₅	+	HO-	=	CH ₃ CO ₂ -	+	C ₂ H ₅ OH
t ₀	C ₀		C ₀		0		0
t	$C_0 - C(t)$		$C_0 - C(t)$		C(t)		C(t)
t∞	0		0		C ₀		C ₀

2)



Séance 10 exercice 2

6) Si l'ordre global est
$$a + b = 1$$
 alors : $-\frac{d[HO^-]}{dt} = k [HO^-]$ et donc $\ln \frac{C_0}{[HO^-]} = k t$.
Si l'ordre global est $a + b = 2$ alors : $-\frac{d[HO^-]}{dt} = k [HO^-]^2$ et donc $\frac{1}{[HO^-]} - \frac{1}{C_0} = k t$.

Il faut donc chercher lequel des deux ordres conduit à la meilleure linéarisation, en traçant $\ln \frac{C_0}{[HO^-]}$ et

$$\frac{1}{[HO^-]} - \frac{1}{C_0}$$
 en fonction du temps.

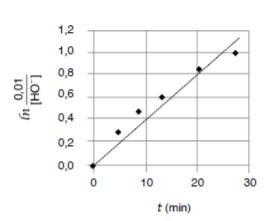
Séance 10 exercice 2

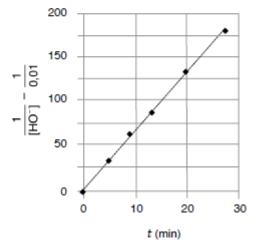
► Hypothèse d'un ordre global 1 : on trace $ln \frac{0.01}{[HO^-]} = f(t)$.

t (min)	0	5	9	13	20	27	80 (t _∞)
[HO] (mol.L ⁻¹)	0,0100	0,0075	0,0063	0,0055	0,0043	0,0036	0
ln 0,01 [HO-]	_	0,29	0,46	0,60	0,84	1,0	_

► Hypothèse d'un ordre global 2 : on trace $\frac{1}{[HO^-]} - \frac{1}{0,01} = f(t)$.

t (min)	0	5	9	13	20	27	80 (<i>t</i> ∞)
[HO] (mol.L ⁻¹)	0,0100	0,0075	0,0063	0,0055	0,0043	0,0036	0
$\frac{1}{[HO^-]} - \frac{1}{0,01}$	_	33	59	82	133	178	_





L'hypothèse d'un ordre global égal à 2 est donc validée car elle conduit à une meilleure linéarisation.

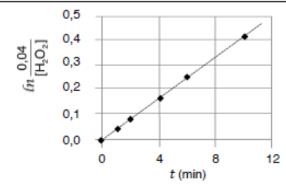
Exercice S1 : Détermination d'ordres partiels, dégénérescence d'ordre

1) Par définition, la vitesse volumique de de réaction est : $v(t) = -\frac{d[H_2O_2]}{dt} = -\frac{1}{2} \frac{d[\Gamma]}{dt}$ où $-\frac{d[H_2O_2]}{dt}$ et $-\frac{1}{2} \frac{d[\Gamma]}{dt}$ sont respectivement les vitesses de disparition de H_2O_2 et Γ .

Il est à noter que comme [H*] est constante, sa vitesse de disparition est nulle.

- Comme la réaction admet une loi de vitesse simple on peut écrire : ν(t) = k [H₂O₂]_t^a [I⁻]_t^δ.
- a) En fin de réaction, la concentration en l⁻ vaut 1 − 2 x 0,04 = 0,92 mol.L⁻¹. On peut donc considérer [l⁻] comme quasiment constante quel que soit l'avancement de la réaction.
 - b) Comme [I⁻] est quasiment constante au cours de la réaction, on a une dégénérescence d'ordre. Dans ces conditions, $v(t) = k \left[[H_2O_2]_t^a \left[[^-]_t^6 \right] devient v(t) = k \left[[H_2O_2]_t^a \right] où k \left[[^-]_0^6 \right] est la constante apparente de vitesse. Si on fait de plus l'hypothèse d'un ordre partiel par rapport à <math>H_2O_2$ égal à 1 alors on a a=1 et $v(t) = k \left[[H_2O_2]_t$. Dans ces conditions on peut donc écrire l'expression différentielle de la vitesse suivante : $-\frac{d[H_2O_2]}{dt} = k \left[[H_2O_2] \right]$ qui, en intégrant entre 0 et t, donne : $\ln \frac{[H_2O_2]_0}{[H_2O_2]} = k \left[[H_2O_2] \right]$
 - c) Pour montrer que l'hypothèse d'un ordre partiel par rapport à H_2O_2 égal à 1 est validée, il faut vérifier que $\ln \frac{[H_2O_2]_0}{[H_2O_2]} = \ln \frac{0.04}{[H_2O_2]}$ est bien une fonction linéaire du temps passant par l'origine.

t (min)	1	2	4	6	8	10
[H ₂ O ₂] (mol.L ⁻¹)	0,0382	0,0367	0,0340	0,0312	0,0288	0,0266
$ln\frac{0.04}{[H_2O_2]}$	0,0460	0,0861	0,1625	0,2485	0,3285	0,4080



L'hypothèse ordre partiel par rapport à H₂O₂ égal à 1 est donc validée car elle conduit à une excellente linéarisation. Comme il n'est pas simple de tracer des droites au tableau, pendant la séance de TE, il est

peut-être préférable de montrer que $\frac{\ln \frac{0,04}{[\mathsf{H}_2\mathsf{O}_2]}}{t} = k_{_{app}}$ est constant.

t (min)	1	2	4	6	8	10
[H ₂ O ₂] (mol.L ⁻¹)	0,0382	0,0367	0,0340	0,0312	0,0288	0,0266
$\frac{\ln \frac{0,04}{[H_2O_2]}}{t} \text{ (min}^{-1}\text{)}$	0,0460	0,0431	0,0406	0,0414	0,0411	0,0408

On trouve alors que $k_{avv} \approx 0.04 \text{ min}^{-1}$.

- 4) a) Dans cette expérience on a maintenant [□]₀ = 2 [H₂O₂]₀, soit la stœchiométrie de la réaction. Chaque fois qu'une molécule de H₂O₂ disparaît, deux ions □ disparaissent. À tout moment de la réaction, on aura donc : [I⁻]₊ = 2 [H₂O₂]₊.
 - b) Comme $[I^-]_t = 2 [H_2O_2]_t^a$, la vitesse volumique de la réaction $v(t) = k [[H_2O_2]_t^a [\Gamma]_t^b]$ devient alors $v(t) = k [H_2O_2]_t^a 2^b [H_2O_2]_t^b$ soit $v(t) = 2^b k [H_2O_2]_t^{a+b}$. Si on fait de plus l'hypothèse d'un ordre partiel par rapport à Γ égal à 1 alors b = 1 et $v(t) = 2 k [H_2O_2]_t^a$ (puisqu'on sait par la question 3 que a = 1). Dans ces conditions on peut écrire l'expression différentielle de la vitesse : $-\frac{d[H_2O_2]}{dt} = 2 k [H_2O_2]^2$. En intégrant entre 0 et t, cela donne : $\frac{1}{[H_2O_2]} \frac{1}{[H_2O_2]_0} = 2 k t$
 - c) La relation précédente peut s'écrire : $\frac{1}{[H_2O_2]} = \frac{1}{[H_2O_2]_0} + 2 \ k$ t. En comparant cette relation à celle obtenue par dosage on trouve que $48,57 = \frac{1}{[H_2O_2]_0}$ ce qui conduit à $[H_2O_2]_0 = 0,02059$ mol.L⁻¹, comparable à la concentration initiale moins précise $(0,02 \text{ mol.L}^{-1})$. Cela est donc compatible avec un ordre partiel de la réaction par rapport à Γ égal à 1. Par comparaison des deux relations, on trouve également 2 k = 6,1 ce qui donne k = 3,0 L.mo Γ 1.min⁻¹.

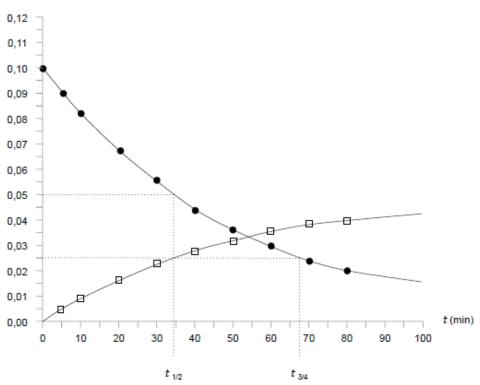
Séance 11

Exercices supplémentaires

Exercice S1 : réactions parallèles jumelles ou concurrentes

- Par définition, ce sont des réactions jumelles puisque les mêmes réactifs conduisent à des produits différents.
- 2) a) La courbe de suivi de la concentration en acide montre que le temps de demi-réaction ($t_{1/2} \approx 34$ min) est aussi celui qui est obtenu en partant d'une concentration initiale en acide de moitié. On note en effet que

 $t_{3/4} \approx 68 \text{ min} = 2 \ t_{1/2}$. Cette indépendance de $t_{1/2}$ par rapport à la concentration initiale en réactif est caractéristique d'un ordre 1.



- b) Si les deux réactions sont d'ordre 1, la vitesse de disparition de l'acide s'écrit $v=v_1+v_2$ soit $v=(k_1+k_2)$ [acide], ce qui correspond à un ordre 1 pour la disparition de l'acide. Pour une réaction d'ordre 1 avec des coefficients stœchiométriques égaux à 1, $t_{1/2}=\frac{\ln 2}{k}$. En posant ici $k=k_1+k_2$ alors il vient : $k_1+k_2=\frac{\ln 2}{t_1}=\frac{\ln 2}{34}=0,020 \text{ min}^{-1}$.
- c) La figure montre qu'à chaque instant, la quantité de camphre formée est la moitié de la quantité d'acide transformé. Les deux produits, camphre et diester, sont donc formés en quantité égale à la même vitesse (v₁ = v₂). Or on a v₁ = k₁ [acide] et v₂ = k₂ [acide]. On en déduit k₁ = k₂ = 0,010 min⁻¹.
- d) La loi de vitesse décrivant la disparition de l'acide, sous forme intégrale est $\ln \frac{[\text{acide}]}{[\text{acide}]_0} = -(k_1 + k_2) t$

Un taux de conversion de 99,9% est atteint lorsque $\frac{[acide]}{[acide]_0} = 10^{-3}$, c'est à dire à la date $t_{99,9}$ telle que

$$t_{99,9} = -\frac{\ln (10^{-3})}{0,0204} = \frac{6,91}{0,020} = 3,5 \times 10^2 \,\mathrm{min}.$$