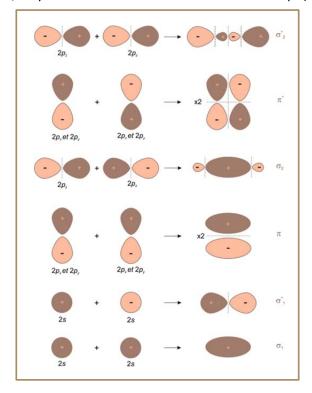
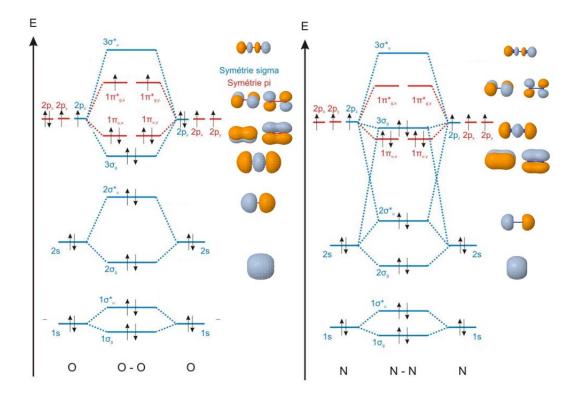

Orbitales Moléculaires: diatomiques A2

Comme première approche, pour construire les O.M. il suffit de faire une combinaison linéaire d'OA. Prenons par exemple la liaison des molécules diatomiques homonucléaires - molécules de la forme A_2 : la molécule la plus simple de ce modèle est le dihydrogène H_2 . Chaque atome d'hydrogène dans H_2 possède une seule orbitale 1s. Les fonctions d'onde atomiques peuvent avoir des phases soit positive ou négative : il y a deux façons d'ajouter des fonctions d'onde, soit en fois en phase (soit + avec + ou – avec –) ou hors-phase (+ avec –) :



Le recouvrement résultant de la combinaison en phase (+ et +) conduit à la formation OM, dite liante, et appelée sigma ($\sigma_{\text{H-H}}$). Cette OM est stabilisée. A contrario, le recouvrement résultant de la combinaison hors-phase conduit à la formation d'une OM antiliante $\sigma^*_{\text{H-H}}$ et elle est déstabilisée (plus que la stabilisation de l'OM sigma). D'où le diagramme d'OM de l'hydrogène¹:



La configuration électronique de H_2 dans son état fondamental est donc : $(\sigma_{HH})^2$ L'indice de liaison est donné par la formule : $i_l = \frac{\sum n_l - \sum n_{al}}{2}$ où n_l est le nombre d'électrons dans des OM liantes et n_{al} le nombre d'électrons dans des OM anti-liantes. Pour le dihydrogène : $i_l(H_2) = (2-0)/2 = 1$. Pour les diatomiques homonucléaires dont les atomes sont de la 2^{eme} période de la classification périodique des éléments, il y a des recouvrements entre les OA 2p (l'axe z étant l'axe de la

diatomique):

Si la différence d'énergie entre la 2s de $A^{(1)}$ et la 2p de $A^{(2)}$ est supérieure à 12eV alors le diagramme est dit « non corrélé ». Sinon, il faut tenir compte de l'interaction 2s-2p : on dit que le diagramme est « corrélé ». Généralement, les OM σ_{2s} sont stabilisées et les σ_{2p} sont déstabilisées (d'où inversion possible entre la σ_{2p} et les π). Ici les cas O_2 (non corrélé) et N_2 (corrélé) 1 :

¹ OrbiMol: bases de données d'orbitales moléculaires — section diatomiques. http://www.lct.jussieu.fr/pagesperso/orbimol par P. Chaquin et F. Fuster, Laboratoire de Chimie Théorique, UPMC Univ. Paris 06- UMR CNRS 7616, Paris.