

Chemical bond in solids A real space perspective Julia Contreras-García

- 1. Why studying chemical bonds?
- 2. Quantum Chemical topology
- 3. Chemical functions
 - a) electron density
 - b) ELF
 - c) NCI
- 4. Summary

- 1. The function
- 2. The topology
- 3. Old concepts
 - 4. New insight

- 5. Applications to high pressure
 - a) ELF: Predicting compressibility and transitions
 - b) NCI: He bonds
 - c) Electron density: the borate family
- 6. The codes
- 7. Summary

- 1. Why studying chemical bonds?
- 2. Quantum Chemical topology
- 3. Chemical functions
 - a) electron density
 - b) ELF
 - c) NCI
- 4. Summary

- 1. The function
- 2. The topology
- 3. Old concepts
- 4. New insight

Motivation

« It's nice to know that the computer understands the problem. But I would like to understand it too. »

E.P. Wigner in Physics Today

The chemical bond is a divide-and-conquer approach

Motivation

Conventional Approach

Desired Properties

Materials

Motivation

Materials by Inverse Design

Conventional Approach

Desired Properties

Materials

How do we divide and conquer in chemical bonds?

- Quantum chemistry gives us a quantitative description of chemical systems. It is predictive
- Bonds are objects from Classical Chemistry
- We need extra tools to extract quantitative information from Quantum Chemistry

(and reduce the dimensionality)

How do we divide and conquer in chemical bonds?

- Quantum chemistry gives us a quantitative description of chemical systems. It is predictive
- Bonds are objects from Classical Chemistry
- We need extra tools to extract quantitative information from Quantum Chemistry

(and reduce the dimensionality)

How do we divide and conquer in chemical bonds?

- Quantum chemistry gives us a quantitative description of chemical systems. It is predictive
- Bonds are objects from Classical Chemistry
- We need extra tools to extract quantitative information from Quantum Chemistry

(and reduce the dimensionality)

How do we divide and conquer in chemical bonds?

- Quantum chemistry gives us a quantitative description of chemical systems. It is predictive
- Bonds are objects from Classical Chemistry
- We need extra tools to extract quantitative information from Quantum Chemistry

QTC in a nutshell

Real space approaches

- Orbital invariant (summation over orbitals)
- Inherently defined in 3D (comprehensible dimensionality)
- Do not depend on the method (applicable to all approximations)
- Usually related to experimental data
- BUT no direct connexion to energetics (lack of the exact functional)

QCT in a nutshell

QCT in a nutshell

Types of CPs in 3D

Maximum

Saddle point of order 1

Types of CPs in 3D

Saddle point of order 2 Minimum

Topological partitions are intuitive

Topological partitions are intuitive

We automatically

- Identify cusps
- Divide through the valleys
- Identify the lowest point in the valley

Topological partitions are intuitive

We automatically

- Identify cusps
- Divide through the valleys
- Identify the lowest point in the valley
- Use this information to see three regions
- These regions contain orography information

Meaning is inherited

QCT in a nutshell

QCT in a nutshell

- 1. Why studying chemical bonds?
- 2. Quantum Chemical topology
- 3. Chemical functions

a) electron density

b) ELF

c) NCI

4. Summary

The electron density

ρ(r) is a fundamental property of any electronic system

$$\rho(\vec{r}) = N \int ... \int \left| \Psi(\vec{x}_1, \vec{x}_2, ..., \vec{x}_N) \right|^2 ds \, d\vec{x}_2 ... \vec{x}_N$$

- ➢ is experimentally accessible
- ➢ is defined within the exact many-body theory,
- is supported by the Hohenberg-Kohn theorem

Example: the electron density

Approxiamately, sum of exponentials over the atoms

Example: the electron density

The electron density

Plane perpendicular to the internuclear line at the critical point that contains the nuclei

Example: the electron density

The electron density

We can know from ab initio methods the chemical structure i.e. Where do we draw lines between atoms?

QCT in a nutshell

Directions along Directions along Sum of signs of which the field which the field eigenvalues grows decreases								
СР	λ>0	λ <0	Signatu re (s)	(r,s)	name	acrony m	Figure	
Maximum	0	3	-3	(3,-3)	maximum			
1 st order saddle point	1	2	-1	(3,-1)	Bond critical point	bcp		
2 nd order saddle point	2	1	+1	(3,+1)	Ring critical point	rcp		
Minimum	3	0	+3	(3,+3)	Cage critical point	сср		30

- In a periodic system, you will always have the 4 types of non-degenerated critical points
- Morse relationship MUST hold:

$$n_{(3,-3)} - n_{(3,-1)} + n_{(3,+1)} - n_{(3,+3)} = 0 \qquad - \begin{cases} n_{(3,-3)} \ge 1 \\ n_{(3,-1)} \ge 3 \\ n_{(3,+1)} \ge 3 \\ n_{(3,+3)} \ge 1 \end{cases}$$

 If λ_i=0, these are degenerated critical « points » (we will see an example later).
E.g. (2,-2)

• Attractors are at the nuclei positions

Simet.	Clase	Tipo	х	У	Z
Oh	(3, -3)	Nucl. Na	0.00000	0.00000	0.00000
Oh	(3, -3)	Nucl. Cl	0.50000	0.50000	0.50000

- Attractors are at the nuclei positions
- (3,-1) signal interactions

Simet.	Clase	Tipo	Х	У	\mathbf{Z}	
Oh	(3, -3)	Nucl. Na	0.00000	0.00000	0.00000	
Oh	(3, -3)	Nucl. Cl	0.50000	0.50000	0.50000	
C3v	(3, -1)	Enlace	0.20618	0.20618	0.20618 C	ation-anion

- Attractors are at the nuclei positions
- (3,-1) signal interactions

Anion-anion interactions are quite common in crystals

Simet.	Clase	Tipo	Х	у	Z	
Oh	(3, -3)	Nucl. Na	0.00000	0.00000	0.00000	
Oh	(3, -3)	Nucl. Cl	0.50000	0.50000	0.50000	
C3v	(3, -1)	Enlace	0.20618	0.20618	0.20618 C	ation-anion
D4h	(3, -1)	Enlace	0.00000	0.50000	0.50000 A	nion-anion

• We have all types of critical points

Simet.	Clase	Tipo	х	у	Z
Oh	(3, -3)	Nucl. Na	0.00000	0.00000	0.00000
Oh	(3, -3)	Nucl. Cl	0.50000	0.50000	0.50000
C3v	(3, -1)	Enlace	0.20618	0.20618	0.20618
D4h	(3, -1)	Enlace	0.00000	0.50000	0.50000
C2v	(3, 1)	Anillo	0.00000	0.28136	0.28136
D4h	(3, 3)	Caja	0.00000	0.00000	0.50000

- We have all types of critical points
- Morse sum is working

2-11+12-3=0

1 1 1		A	
	0	0	
	_)
			-

Simet.	Clase	Tipo	Х	у	Z	Mult.
Oh	(3, -3)	Nucl. Na	0.00000	0.00000	0.00000	+ 1
Oh	(3, -3)	Nucl. Cl	0.50000	0.50000	0.50000	+1
C3v	(3, -1)	Enlace	0.20618	0.20618	0.20618	_ 8
D4h	(3, -1)	Enlace	0.00000	0.50000	0.50000	_ 3
C2v	(3, 1)	Anillo	0.00000	0.28136	0.28136	+ ¹²
D4h	(3, 3)	Caja	0.00000	0.00000	0.50000	3
Local information: CPs

- We have all types of critical points
- Morse sum is working

• We only have (3,-3) at the nuclei?

Simet.	Clase	Tipo	Х	у	Z	Mult.
Oh	(3, -3)	Nucl. Na	0.00000	0.00000	0.00000	+ 1
Oh	(3, -3)	Nucl. Cl	0.50000	0.50000	0.50000	+ 1
C3v	(3, -1)	Enlace	0.20618	0.20618	0.20618	_ 8
D4h	(3, -1)	Enlace	0.00000	0.50000	0.50000	_ 3
C2v	(3, 1)	Anillo	0.00000	0.28136	0.28136	+ ¹²
D4h	(3, 3)	Caja	0.00000	0.00000	0.50000	3

Local information: CPs

Beriullium HCP

PC	x	y	z	$\rho(PC)$
n(Be)	0.3333	0.6667	0.2500	32.6222
n(MNN)	0.3333	0.6667	0.7500	0.0488

QCT in a nutshell

Computing the Morse complex of f

Example: the electron density

Old concepts

Contact polyhedra

Old concepts

Contact Polyhedra

Electron density basins

QCT in a nutshell

QCT in a nutshell

Properties

Properties

0.24 • BP F 0.22 Е D 0.20 С p(a.u.) 0.18 В 0.16 0.14 А 0.12 0.00 0.05 0.10 0.15 0.20 0.25 В Ρ eje [111] (coordenadas cristalograficas)

When the crystal is compressed, the electron density is displaced, leading to a change in polarity from $B^{\delta+}P^{\delta-}$ at V_0 to $B^{\delta-}P^{\delta+}$ at V=0.57V₀

Outline

The function

- 1. Why studying chemical bonds?
- 2. Quantum Chemical topology

3. Chemical functions

4. Summary

Fermionic information

• ELF can be interpreted as an excess of local kinetic energy density due to Pauli repulsion.

$$t_{p}(\vec{r}) = t(\vec{r}) - \frac{1}{8} \frac{\left|\nabla\rho(\vec{r})\right|^{2}}{\rho(\vec{r})}$$

Bosonic system (iso-orbital)

- with the same density
- Pauli principle has been turned off

The electron localization function

Fermionic information

- It is divided by TF to get rid of electro density dependence
- Re-scaled to go from 0 to 1

$$t_{p}(\vec{r}) = t(\vec{r}) - \frac{1}{8} \frac{|\nabla \rho(\vec{r})|^{2}}{\rho(\vec{r})}$$
$$\chi(\vec{r}) = \frac{t_{p}(\vec{r})}{c_{p}\rho(\vec{r})^{\frac{5}{5}}} \quad ELF = \frac{1}{(1 + \chi^{2}(\vec{r}))}$$

The electron localization function

- It recovers the Lewis picture of a system
- ELF is close to one in:
 - Lone pairs

- It recovers the Lewis picture of a system
- ELF is close to one in:
 - Lone pairs

Lone Pair

- It recovers the Lewis picture of a system
- ELF is close to one in:
 - Lone pairs •

- It recovers the Lewis picture of a system
- ELF is close to one in:
 - Lone pairs
 - Atomic shells

Electron numbers and charge transfer

The electron localization function

- It recovers the Lewis picture of a system
- ELF is close to one in:
 - Lone pairs
 - Atomic shells
 - Bonds

 $H_2C=CH_2$

H₃C-CH₃

Bond order

The electron localization function

Critical points

Molecular solids

$$R(N_2 N_2)$$

Covalent solids

V(C-C)

R(C...C)

Ionic solids

R(NaCl)

Charge transfer is verified Na=10 e Cl=18 e

Metals

R(AI)

Metals

$$\chi(\vec{r}) = \frac{t_P(\vec{r})}{c_F \rho(\vec{r})^{\frac{5}{3}}} \quad ELF = \frac{1}{(1 + \chi^2(\vec{r}))}$$
$$t_P(\vec{r}) = t_{HEG}(\vec{r}) \quad ELF = 0.5$$

Metallic valence close to HEG

R(AI)

ELF pictures recover VSEPR

ab ₂ BeCl ₂	() •••	ab ₃ e	NH ₃	
ab ₃ BCl ₃	N	ab ₂ e ₃	XeCl ₂	0-0-0
ab ₄ CH ₄		ab3e2	ClF ₃	4
ab ₅ PCl ₅		ab4e	SF ₄	
ab_6 SCl ₆		ab5e	BrF5	

Still missing something...

Outline

- 1. Why studying chemical bonds?
- 2. Quantum Chemical topology

3. Chemical functions

- 1. The function
- 2. The topology
- 3. Old insight
- 4. New insight

4. Applications

NCI

Critical point : $\nabla \rho = 0$

Let's look at the region $\nabla \rho \rightarrow 0$

NCI:

analysis of the reduced density gradient at low densities

$$s = \frac{1}{c_s} \frac{|\nabla \rho|}{\rho^{4/3}}$$
 with $c_s = 2(3\pi^2)^{1/3}$

•How does it work?

Model densities

Atoms

•Atomic densities can be mimicked like a sum of *Nshells* exponentials

$$\rho^{at}(r) = \sum_{i}^{noncond} c_i e^{-\zeta_i r}$$

•1st shell can be approximated by a 1s orbital

$$\rho_{1s} = \frac{n_{1s}}{\pi} \left(\frac{Z}{a_0}\right)^3 e^{-2Zr/a_0}$$

Atoms

 ρ

At Paking the outermost exponential

- $\rho(r) = ce^{-\zeta r}$
- $|\nabla \rho(r)| = c\zeta e^{-\zeta r}$

• $\lim_{r \to \infty} s(r) = \infty$ (i.e. when $\rho \to 0$)

Model densities

Molecules

Works specially well at low densities (s → 0) at atomic positions (1s orbital)

Promolecular densities

Crystallography: promolecular densities are used in refinement of high-resolution X-Ray data of large systems

Promolecular approach

$$\rho(x, y, z) = \rho_{1s}^{A} + \rho_{1s}^{B} = \left(ce^{-\zeta\sqrt{x^{2} + y^{2} + (z - R/2)^{2}}}\right)^{2} + \left(ce^{-\zeta\sqrt{x^{2} + y^{2} + (z + R/2)^{2}}}\right)^{2}$$

• s goes to 0 in the interactions

$$\lim_{z \to 0} s(\rho) = \lim_{z \to 0} (e^{R/3}r + O(r^3)) = 0$$

• When we plot $s(\rho)$ at low densities, the behavior is very characteristic

Promolecular approach

$$\rho(x, y, z) = \rho_{1s}^{A} + \rho_{1s}^{B} = \left(ce^{-\zeta\sqrt{x^{2} + y^{2} + (z - R/2)^{2}}}\right)^{2} + \left(ce^{-\zeta\sqrt{x^{2} + y^{2} + (z + R/2)^{2}}}\right)^{2}$$

• s goes to 0 in the interactions

$$\lim_{z \to 0} s(\rho) = \lim_{z \to 0} (e^{R/3}r + O(r^3)) = 0$$

• When we plot $s(\rho)$ at low densities, the behavior is very characteristic Let's see an example! 77

Repulsive interactions

• Steric clashes

Weak interactions

Van der Waals

Methane dimer

Benzene dimer

Strongly attractive interactions

Differentiating interaction types

Differentiating interaction types

1) Represent s isosurfaces in real space 2) Colour them in terms of $sign(\lambda_H) \ge \rho$

Delocalized interactions

Benzene packing maximizes the number of C-H··· π and C-H···C contacts.

Delocalized interactions

AIM

CH-C Straight bond path

$CH-\pi$

H roughly equidistant to the whole ring Bond path significantly bent

Delocalized interactions

NCI

CH-C Disc-shaped and localized

$CH-\pi$

Large isosurface involving the whole $\boldsymbol{\pi}$ electron cloud

Big systems

- •One of the major areas of application of weak interactions are biomolecules
- •HOWEVER, wavefunctions are not available
- In the non covalent region, there is very little density reconstruction, so we can use and independent atom model (non relaxed or promolecular densities)

Big systems

How can we apply NCI to such big systems ?

- Since promolecular works well for small densities, we use the promolecular approximation
- Parameters ζ_i and c_i for each atom are internally stored in the code
- No need for wavefunction

0

• Sum on a grid (very fast)

Big systems

Are characteristics really preserved?

Proteins

•Hydrogen bonds stabilize the helix

•Big region of van der Waals interaction inside the helix and between methyle lateral chains one step away

Proteins

•Van der Waals interactions between CH₂ groups

DNA

2. QM classification of solids

ELF

Diamond

Graphite

Summary

What are you looking for	Atoms and bonds Atomic charges	Bonds, Ione pairs Charges and volumes in Lewis entities	Non covalent interactions (even in big systems)
You should use	Electron density	ELF	NCI
Example		ELF = 0.9	$s = 0.6,$ $\rho < 0.05$

Summary

- It is important to choose the correct tool
- ...or even to mix them all: for example, in chemical transformations, where we usually go from non covalent to covalent interactions

Outline

5. Applications to high pressure

a) ELF: high pressure metals

b) NCI: He bonds

6. The codes7. Summary

Metals under pressure

New materials : Electronic structure of high pressure metals

>Under pressure, solids exhibit increasingly shorter interatomic distances. Intuitively, this response is expected to be accompanied by an increase in the widths of the valence and conduction bands and hence a more pronounced free-electron-like behavior.

➢However, recent experiments have shown a pressure-induced transformation of Na into an optically transparent and insulating phase at 200 GPa (5.0-fold compression)

>What is the electronic structure behind this new state of matter?

Na

Na

Phys. Rev. B 83, 184106 (2011

Na

Localization of valence electrons is again observed under pressure

Na

Localization of valence electrons is again observed under pressure

K

Same structure! Ni2In, P=0GPa K2X, P=27GPa Electrons in same position as anions!

Outline

5. Applications to high pressure

a) ELF: predicting compressibility & transformations

b) NCI: He bonds

c) Electron density: the borate family

6. The codes
 7. Summary

- Arsenolite has a closedcompact As₄O₆ cages
- It amorphizes at 15 GPa when compressed alone
- It does not amorphize when He is used as pressure transmiting medium.

WHY??

Phys. Rev. B 93, 054102 (2016)

 It gives ordered helium trapping in the voids when compressed in He

 It gives ordered helium trapping in the voids when compressed in He

- Very localized structural bonds
- They alter the properties of pure As_4O_6 ,
 - e.g. pressure-induced amorphization is hampered

Outline

5. Applications to high pressure

a) ELF

Polarity of ionic compounds Predicting compressibility Rationalizing phase transitions

b) NCI: He bonds

c) ELF: superconductivity

- 8. The codes
- 9. Summary
Superconductivity is technologically very interesting...

• Two key features: null resistivity and perfect repulsion of magnetic field.

Interesting applications: electronics, levitation

Superconductivity is technologically very interesting...

• Two key features: null resistivity and perfect repulsion of magnetic field.

Interesting applications: electronics, levitation

However...

• Superconductivity appears at very low temperatures

•

• Superconductivity appears at very low temperatures

- The problem: very low is VERY low: AI (1.2K), Zn (0.88 K)
- Calculations are extremely expensive, and not always work
 AIH₃: Tc theo= 132-146 K ... Tc exp=4 K! (250GPa)

• Superconductivity appears at very low temperatures

- The problem: very low is VERY low: AI (1.2K), Zn (0.88 K)
- Calculations are extremely expensive, and not always work
 AIH₃: Tc theo= 132-146 K ... Tc exp=4 K! (250GPa)
- We need to understand the electronic structure of these compounds for an affordable inverse design of high Tc

• Superconductivity appears at very low temperatures

- The problem: very low is VERY low: AI (1.2K), Zn (0.88 K)
- Calculations are extremely expensive, and not always work
 AIH₃: Tc theo= 132-146 K ... Tc exp=4 K! (250GPa)
- We need to understand the electronic structure of these compounds for an affordable inverse design of high Tc

Let's start from a reasonable starting point...H-based systems!

Hydrogen based superconductors

A new family of high-temperature superconductors: H₃S (203K), LaH₁₀ (260K). Room temperature SC of C-S-H system!

Hydrogen based superconductors

A new family of high-temperature superconductors: H₃S (203K), LaH₁₀ (260K). Room temperature SC of C-S-H system!

- Something to keep in mind:
 - High pressures are needed:
 - H₃S at 203K and 150GPa, LaH₁₀ at 260K and 190GPa.
 - Hopefully replaced by chemical pressure! (next step)

Hydrogen based superconductors

A new family of high-temperature superconductors: H₃S (203K), LaH₁₀ (260K). Room temperature SC of C-S-H system!

- Something to keep in mind:
 - High pressures are needed:
 - H_3S at 203K and 150GPa, La H_{10} at 260K and 190GPa.
 - Hopefully replaced by chemical pressure! (next step)

• 178 systems with available Tc values (pure and binary compounds)

- Characteristics:
 - s, p atoms

- Characteristics:
 - s, p atoms
 - Non charged (covalent, molecular or weak H interactions)

- Characteristics:
 - Hydrogen rich systems

- Characteristics:
 - Hydrogen rich systems
 - Stretched H-H bonds

- Characteristics:
 - Hydrogen rich systems
 - Stretched H-H bonds
- Necessary but not sufficient conditions!

- Characteristics:
 - Hydrogen rich systems
 - Stretched H-H bonds
- Necessary but not sufficient conditions!

How about the electron localization?

Increasing the networking value in the metal also increases it for the Cooper pair

Increasing the networking value in the metal also increases it for the Cooper pair

Increasing the networking value in the metal also increases it for the Cooper pair

3D delocalization values in the normal calculation can be used to glimpse superconducting connectivity

ELF=0.9

- At ELF=0.57 the hydrogen network is connected
- We call this ELF value the networking value, ϕ

Networking value ϕ

• We determined it in the 178 crystalline structures

Correlation between T_c and ϕ

• ϕ provides a first estimate of the superconducting critical temperature

- ϕ provides a first estimate of the superconducting critical temperature
- Including chemical and electronic structure features reduces the dispersion • within 60K $\Phi_{DOS} = H_f \sqrt[3]{H_{DOS}}$ H_{DOS}=DOS at the Fermi level projected on H

H_f=Hydrogen fraction

- ϕ provides a first estimate of the superconducting critical temperature
- Including chemical and electronic structure features reduces the dispersion within 60K $\Phi_{DOS} = H_f \sqrt[3]{H_{DOS}} \qquad H_{DOS} = DOS \text{ at the Fermi level projected on H}_{H_f = Hydrogen fraction}$
- Sufficient condition, avoids very expensive calculations!

Nat Comm 12, 5381 (2021)

Summary

- The networking value is able to capture effectively how sensitive the electronic cloud is to lattice vibrations, hence correlating with Tc
- It improves all other structural or electronic indexes previously proposed
- It only requires DFT ground state+ELF calculations

Summary

- The networking value is able to capture effectively how sensitive the electronic cloud is to lattice vibrations, hence correlating with Tc
- It improves all other structural or electronic indexes previously proposed
- It only requires DFT ground state+ELF calculations
- It offers a simple way of screening new superconductors
- Points the way to inverse engineering new hydrogen-based superconductors

Programs

 ELF and NCI from periodic calculations: CRITIC

 NCI from molecular calculations, PDBs and crystallographic data

 NCI from PDB with PDB treatment: NCIWeb coming soon!

CRITIC

Total	Generic	Hybrid
Maximum number	64	64
Bond number	176	200
Ring number	200	200
Cage number	64	64
Morse sum equals	24	0

N	SYM	СР	ТҮРЕ	X	Y	Z	Μ
1	Oh	(3,-3)	Nucleus	0.000	0.000	0.000	4
2	Oh	(3,-3)	Nucleus	0.000	0.000	0.500	4
3	C3v	(3,-3)	Maximum	0.038	0.462	0.462	32
4	C4v	(3,-3)	Maximum	0.000	0.084	0.500	24
5	D2h	(3,-1)	Bond	0.250	0.500	0.250	24
6	C4v	(3,-1)	Bond	0.790	0.500	0.500	24
7	C2v	(3,-1)	Bond	0.059	0.500	0.941	48
8	C2v	(3,-1)	Bond	0.000	0.453	0.453	48
9	C3v	(3,-1)	Bond	0.487	0.487	0.013	32
10	C4v	(3,-1)	Bond	0.000	0.000	0.530	24
11	C2v	(3,+1)	Ring	0.000	0.320	0.320	48
12	C3v	(3,+1)	Ring	0.048	0.048	0.452	32
13	C4v	(3,+1)	Ring	0.000	0.000	0.934	24
14	C2v	(3,+1)	Ring	0.521	0.021	0.000	48
15	C2v	(3,+1)	Ring	0.516	0.016	0.500	48
16	Td	(3,+3)	Cage	0.250	0.250	0.250	8
17	C3v	(3,+3)	Cage	0.982	0.518	0.018	32
18	C4v	(3,+3)	Cage	0.500	0.500	0.023	24

Morse sum must is zero

NCIPLOT

NCIWEB

1. Visual, interactive interface.

0 100 00 100 00 100 00

- 2. Clear instructions with interactive explanations.
- 3. Both xyz and pdb files are accepted, either from uploaded or from a PDB record.

100° 00 100° 00 100° 00 100°
NCIWEB

IPDB at a Glance 46689 Distinct Protein Sequences 42251 Structures of Human Sequences 10904 Nucleic Acid Containing Structures of More Statistics

 About
 About Us
 Citing Us
 Publications
 Team
 Careers
 Usage & Privacy

 Help
 Contact Us
 Help Topics
 Website FAQ
 Browser Test
 Glossary

 RCSB Partners
 Nucleic Acid Database
 wwPDB Partners
 RCSB PDB
 PDBs
 BMRB

RCSB PDB (citator) is managed by two members of the Research Collaboratory for Structural Bioinformatics: Rutgers and UCSD-8DSC RUTGERS | UCSan Diego SDSC

RCSB PDB is a member of the PDB @EMDataResource

195

NCIWEB

1. All crystallographic molecules and salts have been removed automatically.

2. An **interactive visualization** page lets us select chains, ligands and orientations to properly prepare our structure.

Summary

 Quantum chemistry and topology can be coupled to provide a quantitative picture of bonding

 This picture is very helpful in understanding high pressure behavior

Thank you for your attention!!!