Chapitre VI Molécules de type AH_n Hypervalence

1. Méthode d'étude

1.1. Méthode des fragments

Les molécules AH_n sont constituées d'un *atome central* A, dont les orbitales de valence sont s et p (dans la suite souvent 2s et 2p) et d'un *groupe* de n atomes d'hydrogène. Par *atome central*, on entend un atome situé sur tous les éléments de symétrie de la molécule. De nombreuses petites molécules comme H_2O , NH_3 , BH_3 , CH_4 etc. se présentent ainsi. L'espace orbitalaire a comme base les quatre OA de A et les n OA 1s des hydrogènes. Nous construirons le diagramme orbitalaire de ces molécules comme résultant de l'interaction de deux *fragments*: A et H_n .

1.2. Atome central (fragment A)

Cet atome est par hypothèse invariant dans toutes les opérations de symétrie du groupe. Les 4 OA de A appartiennent à une représentation irréductible (RI) de la molécule. Nous avons pu constater au chapitre précédent lors de l'étude du modèle H₂O que l'orbitale 2s était

totalement symétrique (A₁), et que p_x , p_y et p_z avaient la même symétrie que x, y, et z. Ces résultats sont généralisables.

L'orbitale 2s, de symétrie sphérique est toujours totalement symétrique : elle correspond à la RI Γ° présentant la *valeur 1 dans toutes les colonnes* de la table de caractères.

Les orbitales 2p sont des bases des mêmes RI que x, y et z respectivement qui seront lues directement dans la table. Ce résultat est intuitif, chaque orbitale étant orientée selon chaque axe, mais se démontre si on se rappelle que ces OA s'écrivent (chap. II, § 2), à un facteur constant près :

R(r) x/r

R(r) y/r

R(r) z/r

où r est le module du rayon vecteur en coordonnées sphériques, grandeur essentiellement positive, invariante dans toutes les opérations de symétrie, ainsi par conséquent que R(r).

Si l'orbitale s et une orbitale p sont de même symétrie, il y aura hybridation. On pourra, comme on l'a vu au chapitre IV (§ 7, fig. 14 et 15), effectuer cette hybridation a priori en remplaçant ces deux OA par les combinaisons $s \pm p$.

1.3. Groupe (ou fragment) H_n

L'ensemble des OA des hydrogènes n'est pas en général la base d'une RI, comme nous l'avons vu pour H_2O . Il sera donc nécessaire de décomposer cette représentation réductible (RR) en RI, ce qui nécessite le calcul des caractères χ_{Rk} de la matrice de transformation associée à chaque opération (ou classe) k. Dans ce cas, une « recette » permet d'effectuer ce calcul très rapidement. En effet, si on fait subir à une molécule AH_n une opération de symétrie, un atome d'hydrogène quelconque i:

- soit n'est pas déplacé : son OA $1s_i$ est changée en elle-même $(1s_i' = 1s_i)$ et la matrice de la transformation présente un 1 en position (i,i) de la diagonale principale

$$\begin{pmatrix} \dots \\ 1s'_i \\ \dots \end{pmatrix} = \begin{pmatrix} X & & & \\ 0 & 1 & 0 & 0 \\ & & X & \\ & & & X \end{pmatrix} \begin{pmatrix} \dots \\ 1s_i \\ \dots \\ \end{pmatrix}$$

- soit est déplacé en prenant la place d'un atome j: son OA est changée en celle de j ($1s'_i = 1s_j$) et la matrice de la transformation présente un 1 en position (i, j) hors de la diagonale principale et un zéro sur celle-ci en position (i, i).

$$\begin{pmatrix} \dots \\ 1s'_i \\ \dots \end{pmatrix} = \begin{pmatrix} X & & & \\ 0 & 0 & 1 & 0 \\ & & X & \\ & & & X \end{pmatrix} \begin{pmatrix} \dots \\ 1s_i \\ 1s_j \end{pmatrix}$$

La trace de l'opérateur est donc égale au nombre des atomes d'hydrogène non déplacés dans l'opération.

On appliquera ensuite la formule de décomposition pour déterminer toutes les RI du groupe H_n . Grâce à la formule de projection, on pourra déterminer ensuite les orbitales de groupe adaptées à la symétrie ou plus simplement orbitales de symétrie.

Alors, les OA de l'atome central se combineront avec les orbitales de même symétrie du groupe pour donner un nombre égal d'OM.

Remarque

Par convention, la symétrie des OA et des OM est notée avec des minuscules a, b, e et t au lieu de A, B, E et T, ces dernières étant réservées à la symétrie des *états*, c'est à dire de la fonction totale (multiélectronique), produit antisymétrisé des OM occupées.

2. Molécules AH₂

2.1. Molécules AH₂ angulaires

Le prototype en est H_2O (Fig. 1), dont les propriétés de symétrie ont été analysées au chapitre précédent. Les OA s et p_z de l'atome central ont la même symétrie a_1 et sont hybridées ; elles interagissent avec le groupe a_1 des hydrogènes, mais on peut considérer comme pratiquement négligeable le recouvrement avec celle des hybrides qui « pointe » en direction opposée, du côté des z < 0. Cette dernière hybride sera donc quasi non liante, n_{sp} . L'autre hybride se recouvre fortement avec les hydrogènes pour donner un couple liant σ_z – antiliant σ^*_z .

P. Chaquin LCT-UPMC

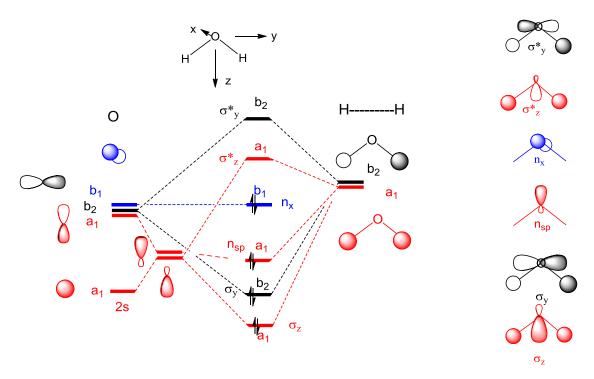


Fig. 1. Diagramme orbitalaire de H_2O .

L'orbitale p_y se recouvre avec l'orbitale de groupe de H_2 de même symétrie b_2 donnant le couple $\sigma_y - \sigma_y^*$. Enfin, l'orbitale p_x , seule de sa symétrie donne une OM non liante identique à l'OA.

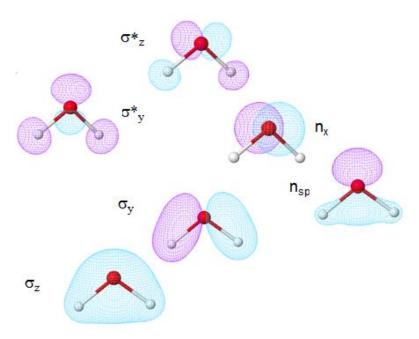


Fig. 2. OM calculées (isovaleurs) de H_2O .

Les orbitales calculées, sous forme d'isovaleurs, sont présentées en Fig. 2. Elles mettent en évidence l'effet d'électronégativité étudié en IV.5.1. : les orbitales liantes sont principalement localisées sur l'atome le plus électronégatif (O), tandis que les antiliantes le sont sur les atomes les moins électronégatifs (H).

Les huit électrons de valence se placent dans les quatre OM de plus basse énergie à l'état fondamental. Il y a donc quatre électrons liants correspondant aux deux liaisons O-H et quatre électrons non liants correspondant aux deux « paires libre » de la représentation de Lewis.

1.3. Molécules AH₂ linéaires

Le prototype de ces molécules est BeH_2 . Elle possède la symétrie $D_{\infty h}$, mais sa simplicité pourra nous éviter un combat rapproché avec ce groupe infini, dont la nomenclature n'utilise pas les symboles A, B, E et T dont nous avons parlé auparavant.

D_{infh}	E	2C(\$)	$\sigma_{\rm v}$	I	2S(φ)	C' ₂		φ-any
\sum_{g}^{+}	1	1	1	1	1	1		$x^2+y^2; z^2$
\sum_{g}	1	1	-1	1	1	-1	R _z	
Π_{g}	2	2cos φ	0	2	2cos φ	0	$(R_x;R_y)$	(xz;yz)
$\Delta_{ m g}$	2	2cos2φ	0	2	2cos2φ	0		$(x^2-y^2;xy)$
\sum_{u}^{+}	1	1	1	-1	-1	-1	Z	
\sum_{u}^{-}	1	1	-1	-1	-1	1		
Π_{u}	2	2cos φ	0	-2	-2cos\$	0	(x;y)	
$\Delta_{\rm u}$	2	2cos2φ	0	-2	-2cos2φ	0		

Table 1. Caractères du groupe $D_{\infty h}$

Malgré sa complexité, la table de caractères livre quelques résultats simples : l'orbitale 2s, totalement symétrique est de symétrie σ_g^+ ; les orbitales p se décomposent en un couple dégénéré π_u (p_x et p_y) et une AO σ_u^+ (p_z) (Fig. 3). (L'axe moléculaire dans ce groupe est, par convention, p_z). Il est clair que les orbitales de groupe de p_z 0, sont les mêmes que dans p_z 0,

-

¹ Les OM calculées de nombreuses molécules sont disponibles en 3-D sur le site OrbiMol http://www.lct.jussieu.fr/pagesperso/orbimol/

dont l'une est σ_g^+ (totalement symétrique) et l'autre a la même symétrie que l'orbitale p_z σ_u^+ . D'où le diagramme de la figure 3. Il n'y a *pas d'hybridation*, et il y a deux OM non liantes notées n_x et n_y . Il y a quatre électrons de valence (Be : $2s^2$), occupant les deux OM liantes.

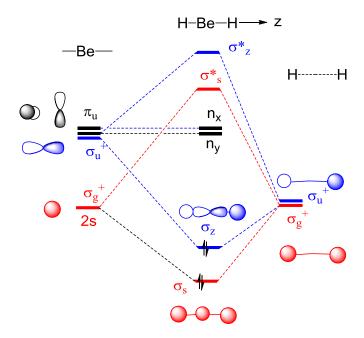


Fig. 3. Diagramme orbitalaire de BeH₂.

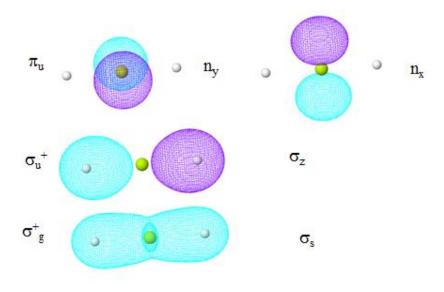


Fig. 4. OM calculées (isovaleurs) de plus basse énergie deBeH₂.

La Figure 4 présente les isovaleurs calculées de la molécule BeH₂. Cette fois, c'est l'hydrogène le plus électronégatif, d'où la localisation prédominante sur ces atomes des OM liantes.

Remarque : retour sur les molécules diatomiques

Dans le Chapitre IV, les orbitales des molécules diatomiques ont été nommées simplement σ/π . On peut maintenant préciser leur symétrie selon la nomenclature de la théorie des groupes. Les diatomiques symétriques (A₂) sont de symétrie $D_{\infty h}$. Les orbitales σ liantes sont σ^+_g . Leurs homologues σ^* antiliantes, antisymétrique par rapport au centre d'inversion sont σ^+_u . Les orbitales π et π^* sont respectivement π_u et π_g .

Les molécules diatomiques hétéroatomiques (ex. AH) appartiennent au groupe $C_{\infty v}$ et sont de symétrie respective σ et π . Ces appellations ont été étendues aux orbitales de la chimie organique présentant des caractéristiques comparables, même lorsque les molécules n'appartiennent pas à un groupe infini (cf. VII.1.1).

1.4. Géométrie des molécules AH₂

Pourquoi certaines molécules AH₂ sont angulaires et d'autres linéaires ? La règle est simple : une molécule adopte l'énergie qui minimise son énergie *totale*. Ceci implique l'énergie de répulsion des noyaux, l'énergie d'attraction électrons-noyaux, l'énergie cinétique des électrons et leur l'énergie de répulsion.

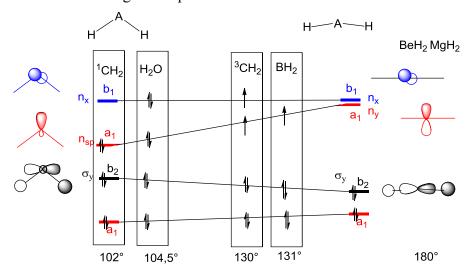


Fig. 5. Diagramme de Walsh pour la déformation angulaire-linéaire d'une molécule AH₂.

La méthode VSEPR, en ne considérant que les énergies de répulsion électronique, rend pourtant compte, dans la plupart des cas, de la géométrie moléculaire. Il s'agit donc d'un

miracle qui reste jusqu'à présent l'une des rares preuves indiscutables de l'existence de Dieu². Que peut nous dire à ce sujet la méthode des orbitales moléculaires ? Sa réponse se fonde sur le diagramme de Walsh. Un diagramme de Walsh montre l'évolution énergétique des OM d'un système subissant une modification géométrique. Il s'agira en l'occurrence des OM d'une molécule AH₂ en fonction de l'angle HAH. La Figure 5 présente cette évolution lorsque l'angle HAH, partant d'environ 110° tend vers 180°, la molécule restant « légèrement » angulaire, ceci afin de rester en symétrie C_{2v} et d'éviter l'ennui d'un changement d'axes dû aux conventions de la théorie des groupes (l'axe z, C_2 dans le groupe C_{2v} se change en x dans $D_{\infty h}$, et réciproquement).

A partir de la molécule angulaire et par ordre croissant d'énergie :

- l'orbitale a₁ est légèrement déstabilisée, mais ne joue pas un rôle primordial (voir plus loin la règle de Walsh);
- l'orbitale b_2 est stabilisée : les hydrogènes se rapprochent de l'axe de l'orbitale p_v , et le recouvrement augmente, l'orbitale moléculaire devient plus liante ;
- l'orbitale a_1 (n_{sp}) est déstabilisée : son énergie, intermédiaire entre 2s et 2p quand elle est hybridée tend vers l'énergie de 2p non hybridée ;
 - l'orbitale n_x reste non liante et donc d'énergie constante.

La géométrie adoptée par la molécule est celle qui minimise la somme des énergies des électrons présents, en appliquant la règle de Walsh.

Règle de Walsh: lorsque les OM subissent des variations énergétiques en sens opposés, c'est l'OM occupée de plus haute énergie (ou plus Haute Occupée, HO) qui régit le comportement du système entier. Ce rôle particulier joué par cette OM est à replacer dans la théorie plus générale de l'approximation frontalière qui sera développée dans le Chapitre VIII. On peut cependant dire que les électrons de cette orbitale jouent pour une molécule le rôle des électrons de valence pour un atome.

*Molécules BeH*₂, *MgH*₂

La géométrie est linéaire, ce qui stabilise la HO σ_y .

² Nous n'examinerons pas ici « l'argument ontologique » d'Anselme de Cantorbéry (1033-1109). Voir par

exemple E. Gilson, La philosophie du Moyen Age, Payot, 1986, pp. 243 et sqq.

P. Chaquin LCT-UPMC

*Molécule BH*₂

La HO est n_{sp} , mais ne contient qu'un électron. La molécule se coude, mais avec un angle relativement grand : HBH = 131° .

*Molécule CH*₂

Si la molécule est dans son état singulet, les deux électrons présents dans n_{sp} amènent une forte stabilisation de la forme coudée dont l'angle se ferme jusqu'à 101°. Cependant, pour les grands angles, les OM n_{sp} et n_x deviennent quasi dégénérées, ce qui laisse prévoir que la molécule serait alors plus stable à l'état triplet de configuration n_{sp}^{-1} n_x^{-1} . Comme n_x est insensible à la valeur de l'angle, on prévoit pour celui-ci une valeur très proche de celui de BH₂, ce que confirme l'expérience (130°). L'expérience montre en outre que c'est la l'état triplet qui est la plus stable.

Molécule H₂O

Comme n_x est insensible à l'angle, on prévoit une valeur HOH (104,5°) proche de celle de CH_2 singulet.

Avec les diagrammes de Walsh, on rend compte des résultats expérimentaux, sur des approximations pourtant différentes de celles de la méthode VSEPR. En effet, dans l'énergie des OM calculées par une méthode CLOA de type Hückel généralisé, on considère surtout les interactions noyaux-électrons par l'intermédiaire des termes *négatifs* H_{ii} et H_{ij} . Seul le dernier varie au cours de la déformation, par l'intermédiaire du recouvrement. Certes, leur paramétrisation empirique tient compte dans une certaine mesure des répulsions électrons-électrons, mais la *variation* de ce dernier terme au cours du changement de géométrie n'est pas explicitement considérée. Y aurait-il ici une seconde preuve de l'existence de Dieu ?

3. Molécules AH₃.

3.1. Molécules AH₃ pyramidales C_{3v}

Les molécules NH_3 , PH_3 etc. appartiennent à ce type géométrique. Nous rappelons en Fig. 6 les éléments de symétrie du groupe C_{3v} , dont les caractères sont donnés Table 2.

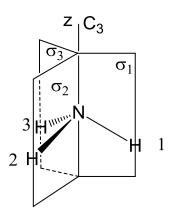


Fig. 6. Eléments de symétrie de NH_3 (groupe C_{3v}).

Nous lisons dans la table les symétries de l'OA 2s totalement symétrique a_1 , de p_z , également a_1 et de p_x et p_y , dégénérées, e. Comme dans H_2O , il y a une hybridation s- p_z .

C _{3v}	Е	2C ₃	$3\sigma_{\rm v}$	_	_
A_1	1	1	1	Z	$x^2+y^2; z^2$
A_2	1	1	-1	R _z	
Е	2	-1	0	(x;y); (R _x ;R _y)	$(x^2-y^2;xy);(xz;yz)$

Table 2. Caractères du groupe C_{3v} .

A l'aide de la Fig. 6, nous établissons aisément les caractères χ_R de la représentation réductible sur la base des OA 1s des hydrogènes (cf. § 1.3) :

E aucun H déplacé $\chi_R = 3$

 C_{3v} tous les H déplacés $\chi_R = 0$

 $\sigma_{\rm v}$ 1 H non déplacé $\chi_{\rm R} = 1$

D'où la décomposition en RI^3 , compte tenu que g (ordre du groupe) = $1.E + 2 C_3 + 3 \sigma_v = 6$:

$$n(A_1) = 1/6 (1.1.3 + 2.1.0 + 3.1.1) = 1$$

$$n(A_2) = 1/6 (1.1.3 + 2.1.0 + 3.(-1).1) = 0$$

$$n(E) = 1/6 (1.2.3 + 2.1.0 + 3.1.0) = 1$$

_

^{3 3} Le site déjà mentionné <u>http://symmetry.jacobs-university.de/</u> effectue le calcul en ligne de réduction d'une représentation sur la donnée des caractères de la représentation réductible.

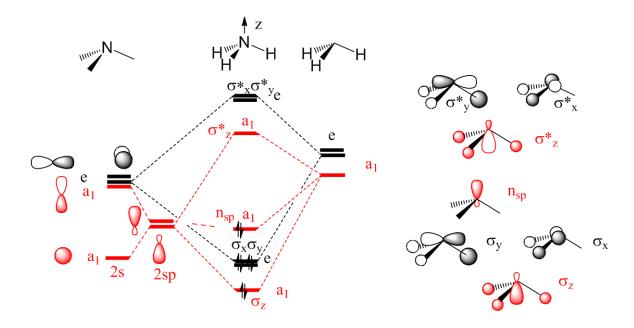


Fig. 7. Diagramme orbitalaire de NH3.Les orbitales de symétrie de H3 sont représentées Fig 8.

Les orbitales des hydrogènes se décomposent en une combinaison a_1 et deux combinaisons dégénérées e, ce qui suffit à établir le diagramme orbitalaire (Fig. 7). L'une des hybrides sp de N, « pointant » en direction des hydrogènes se recouvre fortement avec leurs orbitales pour former le couple $\sigma_z - \sigma^*_z$. L'autre hybride, comme nous l'avons déjà admis à plusieurs reprises, peut être considérée comme quasi non liante. Le couple dégénéré p_x et p_y (e) se recouvre avec les orbitales du groupe H_3 de même symétrie pour donner deux couples $\sigma_x \sigma_y - \sigma^*_x \sigma^*_y$.

Si nous voulons en outre une représentation graphique de ces OM, il nous faut établir les orbitales du groupe NH₃ adaptées à la symétrie en utilisant les formules de projections.

Orbitales de symétrie a₁

Soit $b_r = 1s_1$, suivant la numérotation de la Fig. 6. Cette OA est transformée comme suit dans les opérations du groupe C_{3v} ; on reporte en dessous les $\chi(A_1)$ lus dans la Table 1 :

$$O$$
 E C_3 C_3^2 σ_1 σ_2 σ_3 $O(1s_1)$ $1s_1$ $1s_2$ $1s_3$ $1s_1$ $1s_2$ $1s_3$ $\chi(A_1)$ 1 1 1 1 1

P. Chaquin LCT-UPMC

D'où:

$$b(A_1) = 1. \ 1s_1 + 1.1s_2 + 1.1s_3 + 1.1s_1 + 1.1s_2 + 1.1s_3 = 2(1s_1 + 1s_2 + 1s_3) = N(1s_1 + 1s_2 + 1s_3)$$

Soit, après normalisation, la combinaison :

$$\phi_1 = \frac{\sqrt{3}}{3} (1s_1 + 1s_2 + 1s_3)$$

Nous savons qu'il n'existe qu'une combinaison a_1 . Il n'est donc pas nécessaire de poursuivre avec des projections de $1s_2$ et $1s_3$ qui donneraient évidemment le même résultat.

Orbitales de symétrie e (dégénérées)

On reprend les transformations de $1s_1$ en portant en dessous $\chi(E)$

O E
$$C_3$$
 C_3^2 σ_1 σ_2 σ_3
O(1 s_1) 1 s_1 1 s_2 1 s_3 1 s_1 1 s_2 1 s_3

On obtient une première combinaison e :

$$b(e)_1 = 2(1s_1) - 1s_2 - 1s_3$$

Comme nous devons trouver *deux* combinaisons, il faut donc faire subir à $1s_2$, par exemple le même sort qu'à $1s_1$:

O E
$$C_3$$
 C_3^2 σ_1 σ_2 σ_3 O(1 s_2) 1 s_2 1 s_3 1 s_1 1s₂ 1 s_3 1 s_1

soit

$$b(e)_2 = 2(1s_2) - 1s_3 - 1s_1$$

A partir de 1s₃, on obtient une combinaison encore différente

$$b(e)_3 = 2(1s_3) - 1s_1 - 1s_2$$

Or, il n'existe que deux combinaisons linéairement indépendantes de symétrie e. Ces trois-là ne le sont donc pas, ce que l'on vérifie aisément en constatant que leur somme est nulle. Comme toute combinaison linéaire de $b(e)_1$, $b(e)_2$ et $b(e)_3$ est aussi de symétrie e, par souci de commodité nous adopterons, d'une part $b(e)_1$, et d'autre part la combinaison

$$b(e)_2 - b(e)_3 = 2(1s_2) - 1s_3 - 1s_1 - 2(1s_3) + 1s_1 + 1s_2 = 3(1s_2 - 1s_3).$$

Soit finalement, après normalisation, les trois combinaisons adaptées à la symétrie :

$$\phi_1 = \frac{\sqrt{3}}{3} (1s_1 + 1s_2 + 1s_3)$$

$$\phi_2 = \frac{\sqrt{6}}{6} (2(1s_1) - 1s_2 - 1s_3)$$

$$\phi_3 = \frac{\sqrt{2}}{2} (1s_2 - 1s_3)$$

Ces trois combinaisons (Fig. 8) ont pour intérêt de posséder un plan (σ_1) de symétrie commun. En conséquence, chaque combinaison e ne se recouvre qu'avec l'une ou l'autre des OA p_x et p_y .

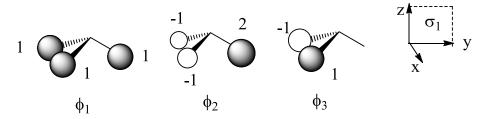


Fig. 8. Orbitales du groupe H_3 dans une symétrie d'ordre 3. On a porté les valeurs relatives des coefficients des OA dans chaque combinaison.

En effet, par rapport à σ_1 , ϕ_2 et p_y sont symétriques tandis que ϕ_3 et p_x sont antisymétriques. D'où finalement les représentations graphiques des OM de NH₃ de la Fig. 7. Il y a 8 électrons de valence occupant 3 orbitales σ et une OM non liante, n_{sp} , responsable du caractère basique de NH₃.

Les isovaleurs des orbitales occupées sont présentées en Fig. 9.

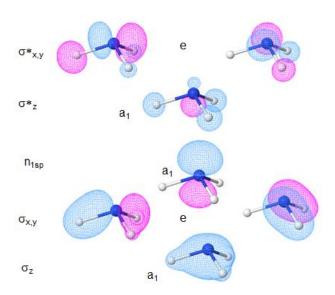


Fig. 9. Isovaleurs des OM de NH₃.

Remarques

- 1 La construction des orbitales de symétrie des hydrogènes a pu paraître quelque peu laborieuse. Elle a cependant été effectuée une bonne fois pour toutes, pour un groupe H_3 de symétrie ternaire, quel que soit le groupe de la molécule : C_3 , D_3 , D_{3h} etc.
- 2 Etait-il possible de construire ces orbitales de symétrie sans faire appel aux projecteurs de la théorie des groupes ? Oui, une fois connue leur symétrie (a₁ et e) et au moins de deux manières i) et ii).
- i) On considère que le groupe H₃ est formé de l'interaction d'un groupe H₂ et de H (Fig. 10).

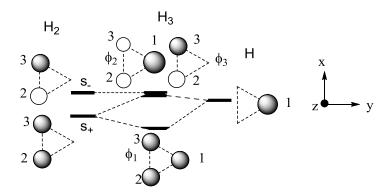


Fig. 10. Construction du groupe H_3 par interaction du groupe H_2 et de H

Les orbitales du groupe H_2 , s_+ et s_- ayant été précédemment déterminées, l'orbitale de H a un recouvrement nul avec s_- qui demeure inchangée sous le nom de ϕ_3 ; elle forme avec s_+ une combinaison liante ϕ_1 de symétrie a_1 et une combinaison antiliante ϕ_2 formant avec ϕ_3 les éléments dégénérés de symétrie e.

ii) On part de chaque OA de l'atome central et on cherche avec quelles AO 1s il peut avoir un recouvrement. Manifestement, 2s se recouvre *également* avec les 3 OA des hydrogènes donc avec une combinaison à égales proportions de $1s_1$, $1s_2$ et $1s_3$, soit ϕ_1 . L'orbitale p_x a un recouvrement nul avec $1s_1$ et se recouvre avec la combinaison $1s_2$ - $1s_3$, soit ϕ_3 . Enfin, p_y se recouvre avec une combinaison qui doit présenter $1s_2$ et $1s_3$ en phase et $1s_1$ en opposition de phase avec elles.

Dans les deux cas, les coefficients sont calculés à partir des relations de normalisation des ϕ_i et de la conservation de la densité de de chaque OA dans leurs combinaisons : la somme des carrés des coefficients de chaque OA 1s dans ϕ_1 , ϕ_2 et ϕ_3 doit être égale à 1.

La normalisation de ϕ_1 , compte tenu de l'égalité de ses coefficients, donne immédiatement⁴

$$\varphi_1 = \frac{\sqrt{3}}{3}(1s_1 + 1s_2 + 1s_3)$$

De même on a

$$\varphi_3 = \frac{\sqrt{2}}{2} \left(1s_1 - 1s_3 \right)$$

La conservation de la densité électronique de chaque OA 1s donne pour ϕ_2 :

$$1s_1$$
 et $1s_3$: $c_1^2 = c_3^2 = 1 - 1/3 - 1/2 = 1/6$

$$1s_2$$
 $c_2^2 = 1 - 1/3 = 2/3 = 4/6$

On retrouve ainsi les valeurs précédentes.

Ces méthodes i) et ii) sont généralisables à des orbitales de groupe de symétrie quelconque.

3.2. Molécule AH₃ plane

C'est le cas de BH₃, AlH₃, etc., planes, de symétrie D_{3h} . On lit dans la table de caractère (table 3) que l'orbitale 2s du bore est a'₁ (RI totalement symétrique) $2p_x$ et $2p_y$ sont de symétrie e', $2p_z$ de symétrie a_2 ''. Les orbitales du groupe H₃ se décomposent en a_1 ' et e'. On peut donc établir le diagramme orbitalaire de la Fig. 11. Il n'y a pas d'hybridation.

\mathbf{D}_{3h}	E	$2C_3$	$3C_2$	$\sigma_{\rm h}$	$2S_3$	$3\sigma_{\rm v}$		
A' ₁	1	1	1	1	1	1		$x^2+y^2; z^2$
A'2	1	1	-1	1	1	-1	R _z	
E'	2	-1	0	2	-1	0	(x;y)	$(x^2-y^2;xy)$
A" ₁	1	1	1	-1	-1	-1		
A"2	1	1	-1	-1	-1	1	Z	
E''	2	-1	0	-2	1	0	$(R_x;R_y)$	(xz;yz)

Table 3. Caractères du groupe D_{3h}

-

⁴ En négligeant le recouvrement des OA 1s, en raison de leur distance (cf. chap. IV §3.1)

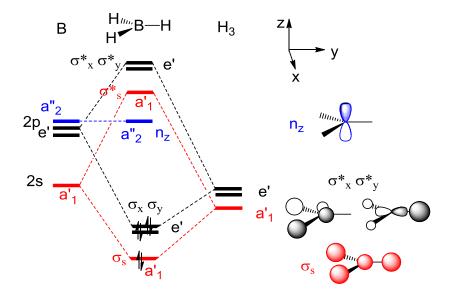


Fig. 11. Diagramme orbitalaire de BH₃.

La représentation graphique des OM se fait aisément. Les combinaisons de H_3 adaptées à la symétrie (Fig. 10) sont les mêmes que pour NH_3 , chacune se recouvrant uniquement avec 2s, $2p_x$ et $2p_y$ respectivement. A l'état fondamental, il existe une OM n_z vacante, non liante donc d'énergie relativement basse, qui confère à la molécule ses propriétés acide au sens de Lewis.

4. Molécules tétraédriques AH₄

Les molécules telles que CH_4 , SiH_4 etc. sont tétraédriques et de symétrie T_d (Table 4). Ce groupe contient 24 opérations dans 5 classes. Il y a 4 axes C_3 passant par chaque liaison CH (cf. fig. 12, partie droite), d'où 8 opérations. Il y a 6 plans de symétrie (σ_d); en effet chaque plan HCH est un plan de symétrie, et il y a 6 façons de choisir 2H parmi 4H : 1-2, 1-3, 1-4, 2-3, 2-4, 3-4. Enfin chaque bissectrice commune de deux angles HCH est un axe S_4 : il y en a 3 avec 2 opérations S_4 et S_4^{-1} par élément.

$T_d \to 8C_3$	$3C_2$	6S ₄	$6\sigma_{\rm d}$		
$A_1 \boxed{1} \boxed{1}$	1	1	1		$x^2+y^2+z^2$
$A_2 \boxed{1} \boxed{1}$	1	-1	-1		
E 2 -1	2	0	0		$(2z^2-x^2-y^2; x^2-y^2)$
$T_1 3 0$	-1	1	-1	$(R_x; R_y; R_z)$	
$T_2 3 0$	-1	-1	1	(x; y; z)	(xy;xz;yz)

Table 4. Caractères du groupe du tétraèdre T_d .

Ce décompte n'était cependant pas nécessaire pour appliquer la formule de réduction, puisqu'un seul élément, reporté dans la Fig. 12, de chaque classe k suffit à déterminer χ_{Rk} .

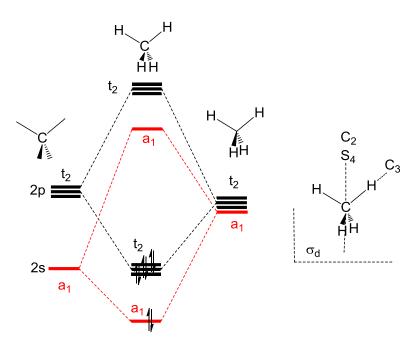


Fig. 12. Diagramme orbitalaire de CH₄.

Nous obtenons ainsi, pour le groupe H_4 , les caractères de Γ_R suivants :

E	aucun H déplacé	$\chi_{\rm R} = 4$
C_3	1 H non déplacé	$\chi_R = 1$
C_2	0 H non déplacé	$\chi_R = 0$
S_4	id.	$\chi_R = 0$
$\sigma_{\rm d}$	2 H non déplacés	$\chi_R = 2$

La formule de réduction montre que la représentation basée sur OA 1s se réduit selon

$$\Gamma_R = t_2 \oplus a_1$$
.

La table montre que 2s est a_1 et p_x , p_y et p_z sont t_2 . Il n'y a donc pas d'hybridation, et on obtient le diagramme de la Fig. 12, les 8 électrons de valence occupant 4 OM liantes σ à l'état fondamental.

Les orbitales de symétrie des hydrogènes peuvent être obtenues par la méthode de projection ou avec la méthode « alternative » du § 3.1, *Remarque* 2, ii). Nous laissons cet exercice au lecteur ou à la lectrice, mais nous présentons en Fig. 13 les orbitales de groupe de H₄. Il faut se rappeler que, en raison de leur dégénérescence, n'importe quel ensemble de trois combinaisons linéairement indépendantes de ces orbitales est une solution acceptable. Celle qui a été choisie ici, ainsi que le trièdre de référence, est destinée à faire clairement apparaître les interactions avec les orbitales p de l'atome central : chaque OA p se recouvre avec une et une seule orbitale de groupe de H₄.

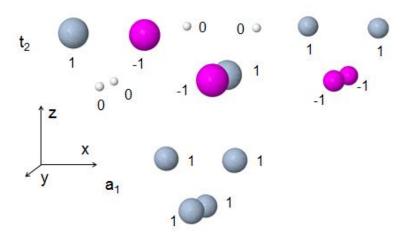


Fig. 13. Orbitales de groupe de H_4 et valeurs relatives de chaque coefficient des AO 1s

Les orbitales occupées calculées sont présentées en figure 14.

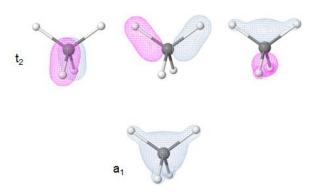


Fig. 14. Isovaleurs calculées des OM occupées de CH₄.

5. Molécules de type AX_n

Les résultats et les méthodes de ce chapitre peuvent être étendus à des molécules de type AX_n , à la condition que l'on puisse considérer que l'atome X se comporte comme H. Cela implique qu'il établisse la liaison A-X avec une seule orbitale de valence possédant les mêmes propriétés de symétrie que l'orbitale 1s de H, afin de pouvoir appliquer les mêmes « recettes », en particulier pour le calcul des caractères des RR du groupe X_n . Ces conditions sont réalisées avec les halogènes ou tout groupement monovalent dont l'orbitale de valence est une orbitale p ou une hybride sp. Grâce à un choix judicieux de repère pour chaque X (fig. 15) ces orbitales se comportent comme les orbitales 1s de H.

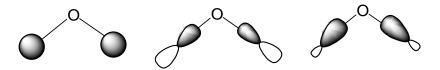


Fig. 15. Equivalence des orbitales de valence p ou sp de X dans les molécules OX_2 avec les orbitales 1s de H dans H_2O .

6. Orbitales localisées et délocalisées – Les deux types d'« hybridation »

6.1 Orbitales délocalisées

Dans cet exposé de la liaison chimique, nous avons implicitement adopté une description délocalisée de la liaison chimique. Les OM sont généralement réparties sur plusieurs atomes, voire l'ensemble des atomes de la molécule. Ainsi, chaque orbitale liante occupée contribue partiellement à l'énergie de chaque liaison qui résulte de leur ensemble. Par construction, ces OM appartiennent à une RI de la molécule et ont donc une symétrie bien définie par rapport à tous les éléments de son groupe.

Dans ce modèle délocalisé, l'hybridation a été définie comme la présence d'orbitales s et p du même atome dans la même OM. Avec les axes de référence choisis, nous avons observé l'hybridation d'une seule orbitale p (p_z en l'occurrence) avec l'orbitale s. On définirait de

même des hybridations sd, dp ou spd, qui se produisent à chaque fois que deux OA de de l différents appartiennent à la même RI.

6.2. Orbitales localisées, hybridations sp, sp^2 et sp^3

Le modèle précédent contraste avec le modèle des *liaisons localisées* souvent exposé en Chimie organique. Celui-ci tend à préserver dans les molécules polyatomiques la situation simple rencontrée dans les diatomiques, où chaque liaison σ résultait de la combinaison de seulement deux OA appartenant à chaque atome et se recouvrant le long de la liaison du schéma de Lewis.

Pour cela, on construit d'abord des *orbitales atomiques hybrides*, combinaisons linéaires des OA de valence de l'atome central, telles que chacune présente un maximum dans la direction d'un seul des atomes liés. Elle n'a ainsi de recouvrement notable qu'avec une orbitale de valence de ce dernier et ce recouvrement selon l'axe de la liaison donne lieu à une liaison σ . On est amené pour cela à combiner :

- une OA s et une p pour décrire une molécule linéaire telle que BeH₂ (hybridation sp); les deux autres orbitales p sont inchangées et seront à l'origine, par exemple, des deux liaisons π dans l'acétylène (Figure 16).

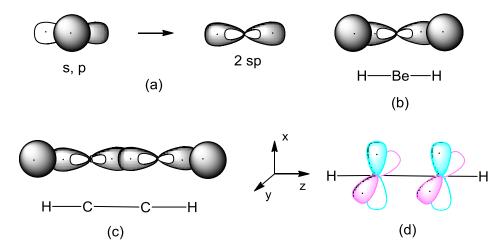


Figure 16. Hybridation sp : (a) hybridation de s et p_z pour former les deux OA hybrides sp ; (b) formation des liaisons σ de BeH₂ ; (c) formation des liaisons σ de l'acétylène (d) formation des liaisons π par recouvrement des orbitales p_x et p_y non hybridées.

- une OA s et deux p pour décrire une molécule trigonale telle que BH₃ (hybridation sp^2); l'autre orbitale p est inchangée et sera à l'origine de la liaison π de l'éthylène (Figure 17).

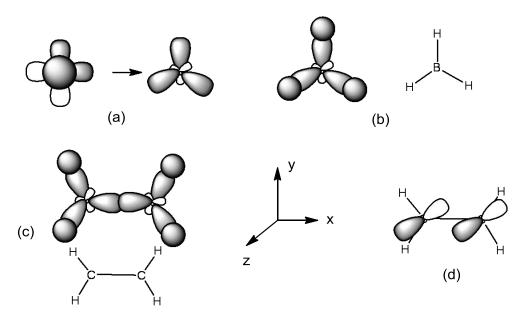


Figure 17. Hybridation sp^2 : (a) hybridation de s avec p_x et p_y pour former les trois hybrides sp^2 ; (b) formation des liaisons s de sp^2 de l'éthylène; (d) formation de la liaison sp^2 de l'éthylène par recouvrement des sp^2 non hybridées.

- une OA s et les trois p (hybridation sp^3) pour décrire une molécule tétraédrique telle que CH₄, pyramidale avec une paire non liante comme NH₃ ou angulaire avec deux paires non liantes comme H₂O (figure 18).

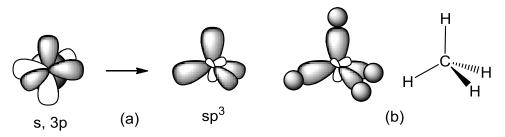


Figure 18. Hybridation sp^3 : (a) hybridation de s avec p_x , p_y et p_z pour former les 3 hybrides sp^3 ; (b) formation des liaisons s du méthane.

Dans ce modèle, une seule OM occupée est associée à chaque liaison ou doublet non-liant.

5.3. Comparaison des modèles localisé et délocalisé

La figure 19 montre les différences des deux modèles dans le cas de H_2O pour lequel on considère une hybridation sp³ dans le modèle localisé.

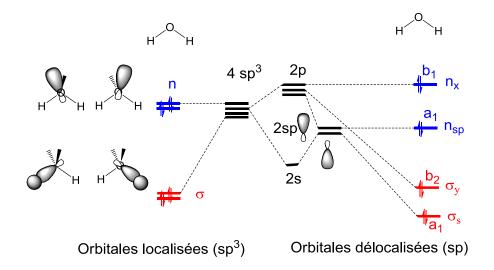


Fig. 19. Comparaison des modèles d'orbitales localisées et délocalisées de H₂O.

On constate tout d'abord que les OM localisées, prises isolément, ne correspondent plus à une RI de la molécule. Ensuite, les diagrammes énergétiques montrent des différences notables. Dans le modèle localisé, les deux orbitales liantes d'une part et les doublets non liants, d'autre part sont équivalentes et de même énergie. Dans le modèle délocalisé, ils sont non équivalents en énergie, en symétrie et en localisation.

La spectroscopie de photoélectrons est une méthode permettant de déterminer les énergies d'ionisation E_i des électrons d'une molécule. Le spectre de H_2O de la Fig. 20 présente une abscisse graduée en eV : chaque massif peut être attribué à l'énergie d'une orbitale de valence. On constate l'existence de deux niveaux non-liante vers -13,5 eV et -15 eV, puis vers -18 eV, on observe un premier niveau liant, le second se situant en dehors des limites de ce spectre. Les orbitales délocalisées (en tant qu' « orbitales canoniques » 5) reproduisent le spectre de photoélectrons. On peut démontrer qu'elles ont pour énergie l'opposé 5 des diverses énergies d'ionisation, résultat connu sous le nom de théorème de Koopmans.

_

⁵ Les *orbitales canoniques* sont définies comme étant de solutions de *l'opérateur de Fock* (cf. par exemple http://www.lct.jussieu.fr/pagesperso/chaquin/HartreeFock.pdf)

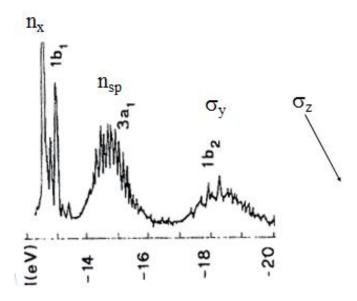


Fig. 20. Spectre de photoélectrons de H₂O.

Le modèle délocalisé est donc confirmé par ce type d'expérience. D'une manière générale, il donne une meilleure description des OM et se montre particulièrement utile à chaque fois que la symétrie joue un rôle, en particulier en spectroscopie. En outre, l'énergie des « orbitales frontalières » délocalisées peut être relié aux propriétés électrophiles/nucléophiles des molécules permet l'interprétation de leur réactivité (cf. chapitre VII).

Le modèle localisé présente l'avantage (est-ce un avantage ?) de préserver une description de la liaison proche du modèle de Lewis : une OM liante + un doublet = une liaison. Mais il suppose la connaissance préalable de la géométrie de la molécule, alors que les diagrammes de Walsh sont capables d'en rendre compte (§ 1.4.). On peut d'ailleurs remarquer la nomenclature sp, sp^2 , sp^3 ne sert généralement, dans le langage courant (en particulier en Chimie Organique), qu'à définir la géométrie de l'environnement d'un atome de carbone et pourrait presque toujours être remplacée par les termes « linéaire », « trigonal » et « tétraédrique » respectivement. Enfin, l'extension de l'hybridation aux orbitales d, sous la forme sp^3d ou sp^3d^2 conduit à une interprétation erronée de l'hypervalence (cf. § 7 suivant). Par ailleurs, il faut cependant souligner que ces modèles sont à la base de deux méthodes de calcul quantique concordant, quant à l'énergie totale et la densité électronique totale, en chaque point de l'espace, des molécules.

7. Molécules AH₅ et AH₆; hypervalence

7.1. Notion d'hypervalence

Lorsqu'un atome est engagé dans une molécule avec une valence supérieure à sa valence usuelle, telle que la « règle de l'octet » est violée, on dit qu'il est *hypervalent* et la molécule est *hypervalente*⁶. Ces molécules se rencontrent surtout dans des combinaisons d'atomes relativement « lourds » (à partir de la troisième période de la classification) avec les halogènes F et Cl. Parmi les plus connus, citons PF₅, SF₄, SF₆, ClF₃, BrF₅, XeF₄, XeF₆, IF₇. Bien que PH₅ et SH₆ ne soient pas connues on peut les prendre comme modèles simples de molécules hypervalentes.

7.2. Molécules AH₅

Nous examinerons les molécules bipyramidales à base triangulaire, de symétrie D_{3h} . On établit les caractères de la représentation réductible Γ_R basée sur les AO 1s des hydrogènes (voir Fig. 21 et table 5) qui donne $\Gamma_R = 2A'_1 \oplus E' \oplus A''_2$

D_{3h}	Е	2C ₃	3C ₂	σ_{h}	$2S_3$	$3\sigma_{\rm v}$		
A'_1	1	1	1	1	1	1		$x^2+y^2; z^2$
A'2	1	1	-1	1	1	-1	R_z	
E'	2	-1	0	2	-1	0	(x;y)	$(x^2-y^2;xy)$
A'' ₁	1	1	1	-1	-1	-1		
A"2	1	1	-1	-1	-1	1	Z	
E"	2	-1	0	-2	1	0	$(R_x;R_y)$	(xz;yz)
Γ_{R}	5	2	1	3	0	3	=2A' ₁ ⊕E'⊕A'' ₂	

Table 5. Table de caractères du groupe D_{3h} .

Les RI des OA de l'atome A sont lues dans la table : a'_1 (s) ; a''_2 (p_z) : e'_1 (p_x , p_y). On remarquera que l'une des orbitales a'_1 de H_5 , bien que de même symétrie que s ne se recouvre pas avec elle et reste non liante (voir les OM calculées Fig. 22). En effet la condition

_

⁶ Le terme d'hypercoordination est parfois préféré : il ne se réfère en effet qu'au nombre d'atomes en contact avec l'atome central et non au nombre de « liaisons » au sens habituel de « 1 liaison = 1 doublet liant ».

d'appartenance à la même RI est une condition nécessaire, mais non suffisante pour que le recouvrement soit non nul.

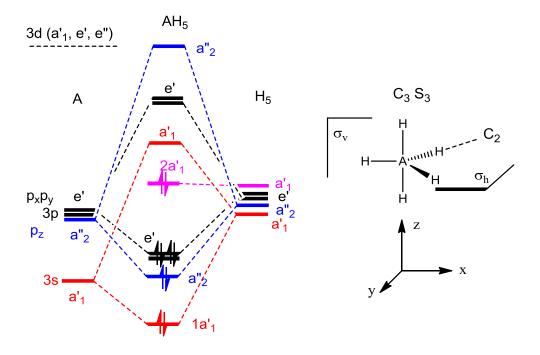


Fig. 21. Diagramme orbitalaire de AH₅ en symétrie D_{3h}.

On constate que quatre OM liantes seulement sont occupées pour assurer les cinq liaisons. Ces liaisons sont donc relativement faibles. En première approximation, $1a_1$ contribue pour 1/5 de liaison sur chaque AH; les AH équatoriaux bénéficient seuls des OM e', soit 2/3 de liaison par AH; enfin a''₂ donne 1/2 liaison pour chaque A-H axial. Finalement on peut dire que chaque atome équatorial présente environ 0,87 liaison et chaque atome équatorial 0,70 liaison. En outre, l'orbitale $2a'_1$, quoique formellement non-liante est en fait légèrement liante en équatorial et antiliante en axial. Ceci est en accord avec le fait que les liaisons axiales sont plus longues et moins fortes que les liaisons équatoriales. Les atomes des périodes 3 et audelà présentent des orbitales d vacantes d'énergie relativement basse dont la symétrie, lue dans la table est a'_1 , a' et a''. L'orbitale a'₂, de symétrie a'₁ (fig. 22) se recouvre avec l'orbitale non-liante a'₁ de même symétrie et la stabilise.

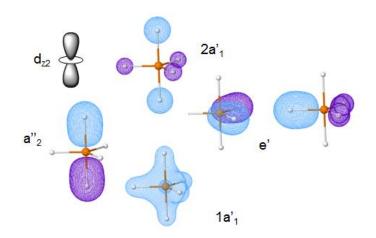


Fig.22. Orbitales occupées de PH₅

Remarque

Les orbitales de H_5 adaptées à la symétrie peuvent être établies plus commodément que par la méthode des projecteurs et considérant qu'elles résultent de l'interaction du groupement H_3 équatorial et du groupement H_2 axial.

7.2. Molécules AH₆

Nous examinerons les molécules octaédriques de ce type (symétrie O_h).

O_h	Е	8C ₃	3C ₂	6C ₄	6C' ₂	i	8S ₆	$3\sigma_h$	6S ₄	$6\sigma_{\rm d}$	_	_
A_{1g}	1	1	1	1	1	1	1	1	1	1		$x^2+y^2+z^2$
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1		
E_{g}	2	-1	2	0	0	2	-1	2	0	0		$(2z^2-x^2-y^2;$ $x^2-y^2)$
T_{1g}	3	0	-1	1	-1	3	0	-1	1	-1	$(R_x;R_y;R_z)$	
T_{2g}	3	0	-1	-1	1	3	0	-1	-1	1		(xy;xz;yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1		
$E_{\rm u}$	2	-1	2	0	0	-2	1	-2	0	0		
T_{1u}	3	0	-1	1	-1	-3	0	1	-1	1	(x;y;z)	
T _{2u}	3	0	-1	-1	1	-3	0	1	1	-1		
Γ_{R}	6	0	2	2	0	0	0	4	0	2	$=A_{1g}\oplus E_{g}\oplus T_{1u}$	

Table 6. Table de caractères du groupe O_h .

La base des OA 1s du groupe H_6 se réduit en $\Gamma = A_{1g} \oplus E_g \oplus T_{1u}$. L'orbitale 3s est de symétrie a_{1g} et les orbitales 3p sont t_{1u} . Elles forment donc quatre orbitales liantes occupées (Fig. 23), tandis que deux orbitales e_g des hydrogènes sont non-liantes, soit quatre doublets liants pour assurer six liaisons. Ici encore, *a fortiori*, on prévoit donc des liaisons faibles, mais la présence d'orbitales 3d, dont le couple z^2 et x^2 - y^2 est de symétrie e_g est susceptible de rendre légèrement liantes les orbitales non-liantes.

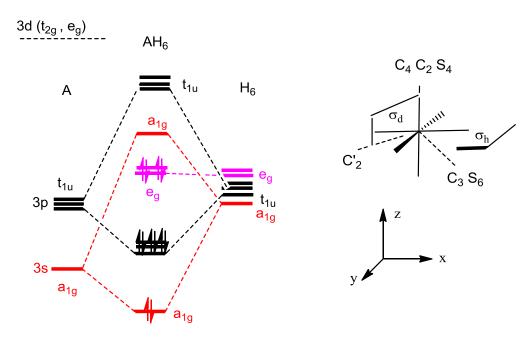


Fig. 23. Diagramme orbitalaire de AH₆. L'occupation des OM correspond à SH₆.

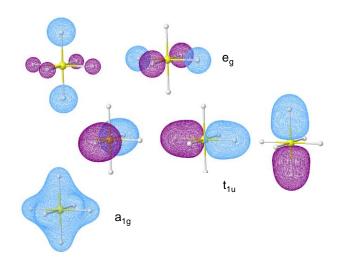


Fig. 24. Orbitales occupées de SH₆

La Figure 24 montre les OM occupées calculées de SH₆.

Dans la molécule XeF_6 , 14 électrons (8 électrons de valence pour le xénon et 1 électron 2p par atome de fluor) sont à placer le diagramme de la Fig. 21. L'orbitale antiliante a_{1g} est occupée, et le « bilan de liaison » n'est plus alors que de trois doublets pour six liaisons.

6.3. Facteurs favorisant l'hypervalence

Les molécules AH₅ et AH₆ ne sont pas connues. Le calcul montre que OH₆ n'existe pas, en ce sens qu'il n'y a pas de minimum d'énergie correspondant à cette structure. Si on parvenait à former cette entité, elle se décomposerait spontanément, sans barrière énergétique, en H₂O + 2H₂, beaucoup plus stable. En revanche, SH₆ pourrait être obtenue, le calcul prévoyant une énergie de liaison S-H d'environ 150 kJ/mol, *sans orbitales d sur le soufre*. Si on ajoute les orbitales *d*, cette énergie est portée à 190 kJ/mol environ. Ceci montre que les orbitales *d* renforcent la molécule de manière significative, mais ne sont pas indispensables à sa cohésion. D'ailleurs, leur participation aux OM occupées est faible (leur occupation est d'environ 0,15 électrons). Si SH₆ n'est pas connue à ce jour c'est en raison d'une décomposition rapide (c'est-à-dire avec une barrière d'énergie faible, mais non nulle) en H₂S + 2H₂, plus stables d'environ 400 kJ/mol.

Ainsi, peut-on définir quelques facteurs favorisant l'hypervalence.

i) L'atome central doit être assez « gros », c'est-à-dire possède un rayon covalent suffisant pour que les ligands puissent s'y lier sans être trop rapprochés les uns des autres. On voit, par exemple, Fig. 25, que dans OH_6 avec une longueur OH de 1,2 Å il y a chevauchement des volumes de Van der Waals des hydrogènes, contrairement à SH_6 (S-H = 1,43 Å).

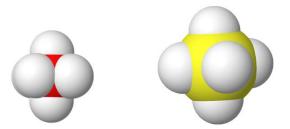


Fig. 25. Modèles « compacts » de OH6 et SH6

ii) La présence d'orbitales d, nous l'avons signalé, stabilise les systèmes hypervalents, malgré une faible participation aux OM. Mais les explications faisant appel à une hybridation sp^3d ou

 sp^3d^2 qui impliqueraient une participation des orbitales d de 20% et 33% respectivement sont totalement injustifiées.

iii) Une électronégativité élevée des atomes liés (F, Cl) favorise l'hypervalence. Les OM liantes (et non liantes), fortement localisées sur les halogènes sont de basse énergie par rapport à celles de l'atome de soufre : la figure 26 montre que tous les électrons de valence sont nettement stabilisés, ce qui n'est pas le cas lors de la formation de SH₆.

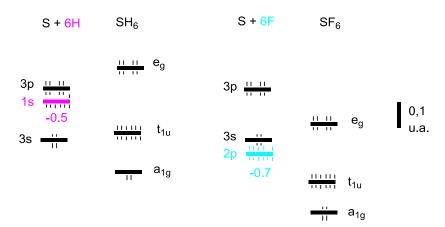


Fig. 26. Variations comparées des énergies orbitalaires lors de la formation de SH₆ et SF₆ par rapport à leurs atomes.

En outre, nous avons vu que des orbitales non liantes sont localisées sur les ligands. Ceci impose dans SH_6 une charge $n\acute{e}gative$ (\approx -0 ,05) alors que l'hydrogène, moins électronégatif que S tendrait naturellement à se charger positivement contrairement aux atomes tels que F et Cl.