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ABSTRACT: We calculate the short-range exchange-correlation energy of the
uniform electron gas with two modified electron–electron interactions. While the short-
range exchange functionals are calculated analytically, coupled-cluster and Fermi-
hypernetted-chain calculations are carried out for the correlation energy and the results
are fitted to an analytical parametrization. These data enable us to construct the local
density approximation corresponding to these modified interactions. © 2004 Wiley
Periodicals, Inc. Int J Quantum Chem 100: 1047–1056, 2004
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Introduction

I n electronic structure calculations using density
functional theory (DFT) [1] in the Kohn–Sham

(KS) scheme [2], the central quantity that needs to
be approximated is the exchange-correlation energy
functional. The vast majority of approximations for
this functional originate from the local density ap-
proximation (LDA) [2] consisting in locally trans-
ferring the exchange-correlation energy of the uni-

form electron gas to the inhomogeneous system of
interest. Actually, it has long been realized that the
LDA can accurately describe short-range correla-
tion effects, but is inadequate for long-range corre-
lation effects (see, e.g., Ref. [3]). This observation
led to the development of the first gradient-cor-
rected functionals [4–9] with the basic idea that the
long-range contribution to the exchange-correlation
energy of the uniform electron gas must not be
transferred to inhomogeneous systems.

Guided by the same idea, it has been proposed
[10–15] to describe only the short-range electronic
correlations effects by a density functional, leavingCorrespondence to: A. Savin; e-mail: savin@lct.jussieu.fr
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the remaining long-range correlations effects to a
more appropriate method such as configuration in-
teraction. Concretely, the method is based on a
decomposition of the true Coulomb electron–elec-
tron interaction as

1
r � vee

� �r� � v� ee
� �r�, (1)

where vee
�(r) is a long-range interaction and v�ee

�(r) is
the complement short-range interaction. This sepa-
ration is controlled by the parameter �. In previous
studies [11–13], the error function has been used to
define the long-range interaction

vee,erf
� �r� �

erf��r�
r , (2)

referred to as the erf interaction. More recently [16],
we have used a sharper long-range/short-range
separation with the erfgau interaction

vee,erfgau
� �r� �

erf��r�
r �

2�

��
e��1/3��2r2. (3)

The method then consists in finding the ground-
state multideterminantal wave function �� of a
fictitious system containing only the long-range
part of the electron–electron interaction V̂ee

� � ¥i�j

vee
�(rij) and having the same density n as the physical

system. The total ground-state electronic energy of
a physical system is then given by

E � ����T̂ � V̂ee
� � V̂ne���� � U� �	n
 � E� xc

� 	n
, (4)

where T̂ is the kinetic energy operator, V̂ne is the
nuclei–electron interaction, U� � is the short-range
Hartree energy, and E� xc

� is the short-range ex-
change-correlation functional defined as the differ-
ence between the standard KS exchange-correlation
energy Exc and the long-range exchange-correlation
energy Exc

� associated to the interaction vee
�

E� xc
� � Exc � Exc

� . (5)

Equation (4) provides an exact decomposition of
the total energy into a long-range component writ-
ten in a wave-function formalism and a remaining
short-range component expressed as a density
functional. In particular, there is no double count-
ing of correlation effects. The only unknown quan-
tity in this approach is the short-range exchange-

correlation functional E� xc
� , which is not the usual

exchange-correlation functional of the KS scheme Exc.
For a reasonable long-range/short-range separa-

tion (� not too small), E� xc
� essentially describes

short-range interactions, and it is therefore ex-
pected to be well approximated by the LDA corre-
sponding to the modified interaction

E� xc
� 	n
 � � n�r���xc

� �n�r��dr. (6)

In Eq. (6), ��xc
� is the short-range exchange-correla-

tion energy per particle obtained by difference from
the exchange-correlation energies per particle of the
uniform electron gas with the standard Coulomb
�xc and with the erf or erfgau interaction �xc

�

�� xc
� �n� � �xc�n� � �xc

� �n�. (7)

As for the original LDA in the KS scheme with
the Coulomb interaction, knowledge of ��xc

� is crucial
to apply the LDA to the short-range exchange-cor-
relation functional. In this article, we give the ex-
pressions of this short-range exchange-correlation
energy per particle of the uniform electron gas with
the erf and erfgau modified interactions. Although
the exchange part can be calculated analytically, the
correlation are derived from coupled-cluster and
Fermi-hypernetted chain calculations.

Atomic units will be used throughout this work.

Short-Range Exchange Energy

The short-range exchange energies per particle
��x

�(rs) of the uniform electron gas for the Wigner–
Seitz radius rs � (3/(4�n))1/3 with the erf and erf-
gau interactions are calculated analytically (see Eqs.
(A9) and (A12) of Appendix A). The inverse of the
interaction parameter, 1/�, represents the range of
the modified interaction and has to be compared
with rs, the characteristic length for exchange. Thus,
the relevant variable for the exchange energy is
actually �rs. Figure 1 shows the ratio of the short-
range exchange energy per particle with the erf and
erfgau interactions to the exchange energy per par-
ticle with the Coulomb interaction ��x

�(rs)/�x(rs). To
compare the two interactions, a scale factor is ap-
plied on the parameter of the erfgau interaction
� 3 (1 � 6�3)1/2�  3.375� so that the erf and
erfgau exchange energies have the same asymptotic
behavior for �rs 3 � (see below).
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It has been shown that for a finite system where
the exchange contribution to the second-order den-
sity matrix n2,x(r1, r2) decays exponentially with r12,
the short-range exchange energy E� x

� can formally be
expanded around � � 0 into an odd series in � [17]

E� x
� � Ex �

1

��
�

n�0

� ��1�nan

n! �2n�1

� �� n2, x(r1, r2)r12
2ndr1dr2, (8)

where Ex is the usual KS exchange energy, an,erf �
1/(2n � 1) for the erf interaction, and an,erfgau �
1/(2n � 1) � 1/3n (�0 for n � 2) for the erfgau
interaction. Except for the term linear in �, the
expansion for �rs3 0 of the erf short-range energy
per particle of the uniform electron gas does not
exhibit the same behavior

�� x,erf
� �rs� � �x�rs� �

1

��
� � � 3

2�4�1/3

rs�
2 �

2
9�2 rs

3�4

� exponential terms. (9)

Similarly, the expansion corresponding to the erf-
gau interaction is

�� x,erfgau
� �rs� � �x�rs� �

2�3 � 3
�18�4�1/3 rs�

2 �
2�9 � 4�3�

81�2 rs
3�4

� exponential terms. (10)

These different behaviors of the short-range ex-
change energy in the uniform electron gas and in a
finite system is consistent with the important LDA
error arising at � � 0, i.e., for the standard DFT
within the Kohn–Sham scheme.

The short-range exchange energy of a finite sys-
tem can also be formally expanded for � 3 � into
the asymptotic series [17]

E� x
� � 2�� �

n�0

� A2n

�2n�!�2n � 2��2n�2

� � n2, x
�2n��r, r�dr, (11)

where n2,x
(2n)(r, r) are the exchange contribution to the

on-top second-order density matrix and its deriva-
tives, An,erf � �(n � 3)/2 for the erf interaction and
An,erfgau � �(n � 3)/2 � 3(n�3)/2�(n � 3)/2 � 2 �
3(n�3/2)�(n � 5)/2 for the erfgau interaction. The
asymptotic expansions of the short-range energies
per particle of the uniform electron gas for large �
do have the same form

�� x,erf
� �rs� � �

3
16

1
rs

3�2 � �3�2

2 �1/3 27
640

1
rs

5�4 � · · · , (12)

�� x,erfgau
� �rs� � �

3�1 � 6�3�

16
1

rs
3�2

� �3�2

2 �1/3 27�1 � 36�3�

640
1

rs
5�4 � · · · . (13)

Again, this is consistent with the quality of the local
density approximation for large � [14, 17].

Short-Range Correlation Energy

The long-range correlation energy per particle
�c

�(rs) with the erfgau interaction has been com-
puted for several values of rs (from rs � 0.2 to 10)
and � (from � � 0 to 25). Coupled-cluster calcula-
tions with double excitations (CCD), according to a
method introduced by Freeman [18], have been
performed (see Appendix B), as well as Fermi-hy-
pernetted-chain (FHNC) calculations (see Appen-
dix C). Data for the erf interaction is already avail-
able [11].

FIGURE 1. Ratio of the erf (solid line) or erfgau
(dashed line) short-range exchange energy per particle
to the exchange energy per particle with Coulomb in-
teraction in the uniform electron gas ��x

�(rs)/�x(rs) with
respect to �rs. To compare the two interactions, a
scale factor has been applied on the interaction param-
eter of the erfgau interaction: � 3 3.375�.
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Once the long-range correlation energy per par-
ticle �c

�(rs) is obtained, the short-range correlation
energy per particle ��c

�(rs) is expressed as

�� c
��rs� � �c�rs��1 �

�c
��rs�

�c
�3��rs�

� , (14)

where �c(rs) is the correlation energy per particle of
the uniform electron gas with Coulomb interaction
taken from the usual parametrization of Vosko,
Wilk, and Nusair (VWN) [19]. According to Eq.
(14), ��c

�(rs) correctly reduces to the VWN value for
� � 0 and vanishes for � 3 �.

The erf and erfgau short-range correlation ener-
gies per particle with respect to � for rs � 0.5 and
rs � 2 are plotted in Figures 2 and 3. For erfgau, the
differences between the results from the CCD and
FHNC calculations are visible only for a high den-
sity (rs � 0.5). Surprisingly, both methods diverge
with the erfgau interaction when ��rs � 1, ex-
plaining the absence of points between � � 0 and
�  0.7 for rs � 2, or between � � 0 and �  1.4 for
rs � 0.5 in Figure 3. We connect this behavior to the
attractive character of the erfgau interaction for
small � (see Appendix D). In practice, the lack of
accuracy of the LDA correlation functional for
small � because of these missing points does not
represent a serious problem, since the LDA ex-
change functional produces large errors anyway in
finite systems in this domain of �, as suggested by
its incorrect expansion as � 3 0 [Eq. (10)].

It has been shown [14, 17] that the leading term
in the expansion of the short-range correlation en-
ergy for large � is

E� c
� �

C�

2�2 � n2,c�r, r�dr � · · · , (15)

where n2,c(r, r) is the on-top correlation pair density
for the full Coulomb interaction, C � 1 for the erf
interaction and C � (1 � 6�3) for the erfgau inter-
action. For the uniform electron gas, n2,c(r, r) can be
expressed in term of the on-top pair-distribution
function g0(rs) so that the short-range correlation
energy per particle has the following exact behavior
for � 3 �

�� c
��rs� �

3C
8�2rs

3 �g0�rs� �
1
2� � · · · . (16)

An estimation of g0(rs) that includes the correct
limits for rs 3 � and rs 3 0 was given by Burke et
al. [20]

g0�rs� � D��	 � rs�
3/ 2 � 
�e�A� 	�rs, (17)

with D � 32/(3�), A � 3.2581, 
 � 163.44, and 	 �
4.7125. Notice that, with this definition, 0 � g0(rs) �
1/2. In Figure 4, we have plotted �2��c

�(rs) computed
with the CCD and FHNC methods with respect to �
for rs � 2. This plot actually illustrates a general

FIGURE 3. Short-range correlation energy per particle
of the uniform electron gas for the erfgau interaction
with respect to the interaction parameter � for rs �
0.5 and rs � 2, computed with the CCD method (dots)
and with the FHNC method (triangles). The analytical
parametrizations [Eq. (18)] using the CCD data and the
FHNC data are represented by the long-dashed and
short-dashed lines, respectively.

FIGURE 2. Short-range correlation energy per particle
(dots) of the uniform electron gas for the erf interaction
with respect to the interaction parameter � for rs �
0.5 and rs � 2 computed with the CCD method. The
analytical parametrization [Eq. (18)] is represented by a
dashed line.

TOULOUSE, SAVIN, AND FLAD

1050 VOL. 100, NO. 6



trend: For large values of rs, the correlation energy
per particle computed from the CCD method does
not exhibit the correct behavior for � 3 �. On the
contrary, the FHNC method seems to perform bet-
ter in this limit in spite of an important numerical
noise. However, for small rs (rs � 1), the CCD
method becomes exact, since it reduces to the ran-
dom phase approximation (see Appendix B), and
thus respects the � 3 � limit.

The short-range correlation energies per particle
for the erf and erfgau interactions are represented
by the analytical parametrization

�� c
��rs� �

�c�rs�

1 � c1�rs�� � c2�rs��2 , (18)

where c1(rs) is determined by a fit

c1�rs� �
u1rs � u2rs

2

1 � v1rs
, (19)

with u1 � 1.0271, u2 � �0.2302, v1 � 0.6197 for erf;
u1 � 0.3916, u2 � 0.0223, v1 � 0.9105 for erfgau
using the CCD data; u1 � 0.4795, u2 � 1.0094, v1 �
10.1247 for erfgau using the FHNC data; and c2(rs)
is imposed by the exact limit for � 3 �

c2�rs� �
8rs

3�c�rs�

3C� g0�rs� � 1/ 2�
. (20)

These analytical parametrizations for erf and erfgau
interactions are represented in Figures 2 and 3 for
rs � 0.5 and 2. The two parametrizations for the
erfgau interaction differ only at small rs where the

imposition of the exact � 3 � limit make both
expressions close to the CCD data.
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Appendix A: Exchange Energy of the
Uniform Electron Gas with Modified
Interaction

The uniform electron gas can be considered as a
system of N electrons in a box of volume � with a
uniform background of positive charge to ensure
neutrality, studied in the thermodynamic limit (i.e.,
N 3 � and � 3 � such that the density n � N/�
remains constant). This system is described by the
electronic Hamiltonian

Ĥ � Ĥ0 � Ĥint, (A1)

where Ĥ0 � T̂ is the kinetic energy operator and
Ĥint is the electron–electron interaction, which can
be expressed by its Fourier expansion

Ĥint �
1
� �

i�j

�
k�0

vee�k�eik�rij, (A2)

where vee(k) is the Fourier transform of the (modi-
fied) electron–electron interaction vee(r). The term k
� 0 corresponding to the Hartree energy has been
removed because it cancels out with the back-
ground energy and the electron–background inter-
action energy, provided that the same modified
interaction has been applied to all these terms. The
exchange energy corresponds to the first-order cor-
rection

Ex � ���Ĥint���, (A3)

where � is the ground-state wave function of Ham-
iltonian Ĥ0 (a Slater determinant of plane-waves). It
has been shown [21] that the exchange energy re-
duces to

Ex � �
1

12�4 kF
3 �

0

�

q2vee�q��1 �
3
2 x �

1
2 x3�� �1 � x�dq,

(A4)

with kF � (3�2n)1/3, x � q/(2kF), � (y) � 1 if y � 0,
and � (y) � 0 if y � 0.

The Fourier transform of the Coulomb interac-
tion is

vee,coul�q� �
4�

q2 , (A5)

so that Eq. (A4) leads after integration over x the
well-known exchange energy per particle �x �
Ex/N

�x,coul�rs� � �
3
8 �18

�2�1/3 1
rs

, (A6)

with rs � 1/(kF) and  � (4/(9�))1/3. For the erf
interaction, inserting the Fourier transform

vee,erf
� �q� �

4�

q2 e�q2/�4�2� (A7)

into Eq. (A4) leads to the long-range exchange en-
ergy per particle

�x,erf
� �rs� � ��18

�2�1/3 1
rs

A��� erf� 1
2A�

� �2A � 4A3�e�1/�4A2� � 3A � 4A3�, (A8)

where A � �/(2kF). The short-range exchange en-
ergy per particle is then

�� x,erf
� �rs� � �x�n� � �x,erf

� �n�

� ��18
�2�1/3 1

rs
�3
8 � A��� erf

1
2A

� �2A � 4A3�e�1/�4A2� � 3A � 4A3�	. (A9)

Similarly, the Fourier transform of the erfgau inter-
action writes

vee,erfgau
� �q� �

4�

q2 e�q2/�4�2� �
6�3 �

�2 e�3q2/�4�2�, (A10)

so that the long-range exchange energy per particle
is

�x,erfgau
� �rs� � ��18

�2�1/3 1
rs
�A��� erf� 1

2A�
� �2A � 4A3�e�1/�4A2� � 3A � 4A3� � A��� erf� 1

2B�
� �2B � 16B3�e�1/�4B2� � 6B � 16B3�	, (A11)

and the short-range exchange energy per particle is
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�� x,erfgau
� �rs� � ��18

�2�1/3 1
rs
�3
8 � A��� erf� 1

2A�
� �2A � 4A3�e�1/�4A2� � 3A � 4A3� � A��� erf� 1

2B�
� �2B � 16B3�e�1/�4B2� � 6B � 16B3�	, (A12)

where B � �/(2�3 kF).

Appendix B: Coupled-Cluster
Calculations of the Uniform Electron
Gas with Modified Interaction

For the Coulomb interaction, Freeman [18] cal-
culated the correlation energy of the uniform elec-
tron gas by summing the ring and screened ex-
change diagrams using the coupled-cluster method
with double excitations (CCD). In this appendix, we
rapidly give the corresponding equations for an
arbitrary electron–electron interaction vee(r).

The CCD wave function is constructed from the
noninteracting determinant of plane-waves �
through

��� � eT̂2���, (B1)

where the excitation operator T̂2 is expressed in
second quantization notation as

T̂2 � �
ki,kj,q

tq�ki, kj�aki�q
† akj�q

† akjaki. (B2)

Retaining only the ring diagrams, the amplitudes
tq(ki, kj) are solutions of the equations (with mo-
mentum in kF units)

tq�ki, kj� �
vee�q�

3�2kFDq�ki, kj� �1 � 6�2 � dk
�2��3 �tq�ki, k�

� tq�kj, k��� �1 � k�� ��k � q� � 1�

� 18�4 � dk
�2��3 � dk�

�2��3 �tq�ki, k�tq�kj, k��

� tq�ki, k��tq�kj, k��� �1 � k�� �1 � k��

� � ��k � q� � 1�� ��k� � q� � 1�	, (B3)

with Dq(ki, kj) � �(q2 � q � (ki � kj)). Compared to
Freeman’s original work, the only modification ap-
pears in the Fourier transform, vee(q), of the arbi-
trary electron–electron interaction vee(r). Once the
amplitudes have been computed, the correlation
energy per particle can be calculated by

�c � �c,dir � �c,ex, (B4)

where �c,dir and �c,ex are the direct and exchange
contributions given by

�c,dir � 18�4kF � dq
�2��3 � dki

�2��3 � dkj

�2��3

� vee�q�tq�ki, kj�� �1 � ki�� �1 � kj�� ��ki � q� � 1�

� � ��kj � q� � 1�, (B5)

�c,ex � �9�4kF � dq
�2��3 � dki

�2��3 � dkj

�2��3 vee

� ��ki � kj � q��tq�ki, kj�� �1 � ki�� �1 � kj�

� � ��ki � q� � 1�� ��kj � q� � 1�. (B6)

The direct contribution, corresponding to the ring
diagrams, is the usual correlation energy within the
random phase approximation (RPA). The exchange
contribution includes additional screened exchange
diagrams. In the high-density limit (rs 3 0), the
method reduces to the RPA and thus becomes ex-
act.

In practice, it is convenient to introduce the in-
termediate quantity

Tq�ki� � � dk
�2��3 tq�ki, k�� �1 � k�� ��k � q� � 1�, (B7)

and to perform the integration by Gauss–Legendre
quadrature. Equation (B3) is then equivalent to

�
j

AijTj � Bi, (B8)

with Tj � Tq(kj) and

Aij � �ij�1 �
2
kF

�
m

WmDim� �
2
kF

WjDij, (B9)
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Bi � �
m

Wm� Dim

3�2kF
�

12�2

kF
TiTmDim� , (B10)

where Dij � vee(q)/Dq(ki, kj) and Wm are the quadra-
ture weights. As Bi actually depends on the Ti co-
efficients, Eq. (B8) have to be solved iteratively.

Appendix C: Fermi-Hypernetted Chain
Theory for Homogeneous Systems

Similar in spirit to the CCD approach (B1), the
FHNC method [22] is based on an approximate
product ansatz for the wave function

��r1, r2, . . . , rN�

� exp��
i�j

u2�ri, rj�	��r1, r2, . . . , rN�, (C1)

where the correlation factor, called the Jastrow fac-
tor, acts on a single Slater determinant �. For ho-
mogeneous systems the pair-correlation function u2
depends only on the inter-electron coordinate rij.
The close relationship between CCD and FHNC
methods is not restricted to a purely formal analogy
between the pair-correlation function u2 and the
CCD excitation operator T̂2. This topic has been
extensively discussed in a review article by Bishop
[23]. For bosonic systems, both methods are actu-
ally equivalent on a certain level of approximation.

It is an important feature of the Jastrow ansatz
that the exact short- and long-range asymptotic be-
havior of a homogeneous system can be expressed
as simple functions of the inter-electron coordinate.
In the case of a Coulomb potential, Kato’s cusp
condition for electrons with antiparallel spin im-
poses a constraint on the first derivative of the
pair-correlation function

du2�r12�

dr12



r12�0

�
1
2 , (C2)

which can be exactly represented by a Jastrow fac-
tor. We discuss below how the modified interaction
affects the short-range behavior of the Jastrow fac-
tor. The long-range asymptotic behavior of electron
correlations is well described by the RPA approxi-
mation [24]. It provides an explicit asymptotic ex-
pression for the pair-correlation function

lim
r123�

u2�r12� � �
1

�plr12
, (C3)

where the plasmon frequency �pl � �4�n of the
electron gas enters into the denominator. This as-
ymptotic behavior can be reproduced by the FHNC
method [25].

For a given pair-correlation function, the FHNC
equations represent a nonlinear system of equa-
tions between “nodal” N(r12), “non-nodal” X(r12),
and “elementary” E(r12) functions. Each of these
functions can be expressed as an infinite sum of
certain types of diagrams build up from the pair-
correlation function and the one-particle density
matrix of the noninteracting system. Some of these
equations are conveniently expressed in coordinate
space, the others in momentum space. The system
of equations is underdetermined and requires an a
priori knowledge of the “elementary” diagrams to
obtain a unique solution. In a series of papers Krots-
check developed a consistent approximation
scheme for the FHNC equations [26–28], which
preserves the correct asymptotic behavior on each
level of approximation. We have used the
FHNC//0 method, which corresponds to the low-
est level of approximation, where “elementary” di-
agrams are neglected altogether. The FHNC//0
equations are given by

�dd�r12� :� Xdd�r12� � Ndd�r12�

� exp	2u2�r12� � Ndd�r12�
 � 1, (C4)

Ñdd�k� � X̃dd�k�SF�k��̃dd�k�, (C5)

where SF is the liquid structure function of the
noninteracting system. We have used the dimen-
sionless Fourier transform

f̃�k� � n � drf�r�exp�ik � r�. (C6)

The “nodal” and “non-nodal” functions provide a
link between the Jastrow factor and the liquid struc-
ture function of the interacting system

S�k� � SF�k� � SF�k�2�̃dd�k�, (C7)

which is essentially the Fourier transform of the
pair-density n2(r12)
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S�k� � 1 � n � dr12�n2�r12�/n2 � 1�exp�ik � r12�. (C8)

This connection enables an approximate variational
treatment of the Jastrow factor within FHNC the-
ory.

In the following we give a brief outline of the
FHNC//0 optimization cycles, essentially follow-
ing Krotscheck’s paper [28]. The starting point is an
effective particle-hole potential

Vph�r12� � 	1 � �dd�r12�
vee�r12�

� ��	1 � �dd�r12�

1/ 2�2 � �dd�r12��I�r12�, (C9)

which depends, beside diagrammatic contribu-
tions, on the bare (modified) interaction potential
vee and an induced interaction �I. In momentum
space, the induced interaction

�̃I�k� � �
k2

4 �1 � 2
S�k�

SF�k�	� 1
S�k�

�
1

SF�k�	
2

, (C10)

can be expressed in terms of the liquid structure
functions of the interacting and noninteracting sys-
tem. Within the high-density regime, vee can be
taken as an initial guess for Vph. Performing FHNC
calculations at successively lower densities it is pos-
sible to reach the low-density regime by taking Vph

from a slightly higher density as an initial guess in
the optimization process. The particle-hole poten-
tial is related to the liquid structure function

S�k� �
SF�k�

	1 � �4/k2�SF
2�k�Ṽph�k�
1/ 2 . (C11)

In the first step of the optimization cycle, Eq. (C11)
is used to get an improved approximation of the
liquid structure function. Using Eqs. (C7) and (C10)
it is now possible to obtain improved approxima-
tions for the induced interaction �I and the dia-
grammatic quantity �dd(r12). These can be used in
the second step to calculate an improved approxi-
mation of the particle-hole potential Vph [Eq. (C9)].
The two steps provide a self-consistent optimiza-
tion cycle, which can be repeated until convergence
has been achieved. Finally we have used the FHNC
equations, (C4) and (C5), to obtain the optimized
FHNC//0 Jastrow factor.

Jastrow factors for the Coulomb interaction and
the long-range erfgau interaction are shown in Fig-
ure 5. With decreasing value of the interaction

strength �, the short-range part of the Jastrow fac-
tors is modified; it changes from a cusp at r12 � 0 for
� 3 � into a smooth behavior for any finite �. For
small values of �, a local minimum appears at an
intermediate distance. As expected, the long-range
behavior of the Jastrow factor is not affected by the
modified interaction.

Appendix D: Divergence of
Calculations on the Uniform Electron
Gas with Modified Interaction

With the erfgau interaction, CCD and FHNC
calculations of the uniform electron gas diverge for
small values of � and rs. This is due to the particular
form of the erfgau interaction. In fact, whereas the
Fourier transform of the Coulomb or erf interaction
is always positive, the Fourier transform of the
erfgau interaction

vee,erfgau�q� �
4�

q2 e�q2/�4�2� �
6�3 �

�2 e�3q2/�4�2� (D1)

can be negative (see Fig. 6). For small �, the nega-
tive part of vee,erfgau(q) is not negligible, introducing
an attractive contribution to the electron–electron
interaction.

It is possible to estimate the domain of � and rs

for which CCD calculations do not converge be-

FIGURE 5. Jastrow factors at rs � 1 for Coulomb
interaction (solid line), and erfgau interactions at inter-
action parameters � � 20 (dashed line), � � 10 (dotted
line), and � � 5 (dotted-dashed line).
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cause of this attractive interaction. Let’s consider
the “state-average” approximation to the CCD
equations proposed by Bishop and Lührmann [29].
This model consists in neglecting the exchange con-
tribution to the correlation energy and averaging
the equations given in Appendix B over the occu-
pied momentum ki and kj. The correlation energy
per particle of the uniform electron gas is then
written as (with momentum in kF units)

�c �
kF

4�2 �
0

�

dqq2vee�q� P�q��tq�, (D2)

where P(q) � 3q/4 � q3/16 if q � 2, P(q) � 1 if q �
2, vee(q) is the Fourier transform of the electron–
electron interaction, and �tq� is the average of the
amplitude tq(ki, kj), which is solution of the equa-
tion

�tq� �
1

3�2kF
vee�q��Dq

�1��1 �
�tq�

P�q��
2

, (D3)

where �Dq
�1� is the average of the inverse of Dq(ki,

kj), introduced in Appendix B.
The general solution of Eq. (D3) is

�tq� �
1 � A�q� � �1 � 2 A�q�

A�q� P�q�
, (D4)

with A(q) � (2�Dq
�1�vee(q)P(q))/(3�2kF). Using the

additional approximation �Dq
�1�  �Dq�

�1 � �P(q)/
q2, one sees immediately that this solution breaks
down (more precisely, becomes imaginary) if

vee�q� � �
3�2kFq2

4P�q�2 . (D5)

Let’s evaluate this inequality in the worst situation
where vee(q) and P(q) take their minimum values.
The interaction vee(q) reaches its minimum vmin 
�5.6kF

2/�2 for q  �/kF, and in this domain P(q) �
3q/4 so that condition (D5) roughly gives

��rs � 1, (D6)

where rs � 1/(kF) with  � (4/(9�))1/3 has been
used. In Figure 7, we have reported the values of �
and rs at the limit of convergence for the calculation
of the correlation energy of the uniform electron gas
with the erfgau interaction, together with the diver-
gence condition (D6). Obviously, the domain of
divergence is well approximated by this condition.

The divergence of both CCD and FHNC meth-
ods for these values of � and rs where the attractive
part of electron–electron interaction becomes im-
portant is reminiscent of the situation happening in
a superconductor where the ordinary perturbation
expansion breaks down for the superconducting
phase.

FIGURE 7. Points at the limit of convergence for cal-
culation of the correlation energy of the uniform elec-
tron gas with erfgau interaction. The domain of diver-
gence is well approximated by ��rs � 1 (solid line).

FIGURE 6. Fourier transforms of the Coulomb inter-
action (dotted line), erf interaction (dashed line), and
erfgau interaction (solid line), each plotted with an inter-
action parameter � � 0.5.
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