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The quantum many-body electronic-structure problem

� N-electron Hamiltonian in the Born-Oppenheimer and non-relativistic approximations:

H(r1, r2, ..., rN) = −1
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N
∑

i=1

∆ri +
N
∑
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vne(ri ) +
1
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|ri − rj |

� Stationary states are determined by the time-independent Schrödinger equation:

H(r1, r2, ..., rN)Ψ(x1, x2, ..., xN) = EΨ(x1, x2, ..., xN)

where Ψ(x1, x2, ..., xN) is a wave function written with space-spin coordinates
xi = (ri , σi ) (with ri ∈ R

3 and σi =↑ or ↓), and E is the associated energy.

� Because electrons are fermions, the wave function must be antisymmetric with respect
to the exchange of two coordinates:

Ψ(..., xi , ..., xj , ...) = −Ψ(..., xj , ..., xi , ...)

� Using Dirac notations, the Schrödinger equation can be rewritten in a convenient
representation-independent formalism:

Ĥ|Ψ〉 = E |Ψ〉 with Ĥ = T̂ + V̂ne + Ŵee

� We want an approximation to the wave function Ψ and the associated energy E of
a specific state, most often the ground-state wave function Ψ0 and the ground-state
energy E0.
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1 Wave-function theory (WFT)
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3 Quantum Monte Carlo (QMC)
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The Hartree-Fock (HF) starting point

� In HF, we approximate the wave function by a single Slater determinant:

Ψ(x1, x2, ..., xN) ≈ Φ(x1, x2, ..., xN) = ψ1(x1) ∧ ψ2(x2) ∧ ... ∧ ψN(xN)

with orthonormal spin orbitals ψi (x) = φi (r)χσi (σ) which are products of spatial
orbitals φi (r) with a spin function χσi (σ) = δσi ,σ.

� The spin orbitals are determined by minimizing the HF energy EHF = 〈Φ|Ĥ|Φ〉 (with
orthonormalization constraints) leading to the HF equations:

(

−1

2
∆r + vne(r) + vH(r)

)

ψi (x) +

∫

v
HF
x (x, x′)ψi (x

′)dx′ = εiψi (x)

with the Hartree potential vH(r) and the HF exchange potential vHF
x (x, x′)

vH(r) =
N
∑

j=1

∫

ψ∗
j (x

′)ψj(x
′)

|r′ − r| dx′ and v
HF
x (x, x′) = −

N
∑

j=1

ψ∗
j (x

′)ψj(x)

|r′ − r|

� In practice, the orbitals are expanded on a basis set: φi (r) =
M
∑

µ=1

cµi fµ(r)

where the basis functions fµ(r) are usually polynomials × decreasing Gaussian function
centered on nuclei (“Gaussian basis sets”). Computational cost = O

(

M
4
)

� Occupied (i ≤ N) and virtual (i > N) HF spin orbitals are used as a starting point
for post-HF methods.
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A straightforward post-HF method: Full configuration interaction (FCI)

� In FCI, the wave function is expanded in terms of the HF determinant Φ, the singly
excited determinants Φa

i , the doubly excited determinants Φab
ij , and so on:

|ΨFCI〉 = c0|Φ〉+
occ
∑

i

vir
∑

a

c
a
i |Φa

i 〉+
occ
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i<j

vir
∑

a<b

c
ab
ij |Φab

ij 〉+
occ
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i<j<k

vir
∑

a<b<c

c
abc
ijk |Φabc

ijk 〉+ · · ·

and the coefficients c0, c
a
i , c

ab
ij , ... are found by minimizing the FCI energy

EFCI = 〈ΨFCI|Ĥ|ΨFCI〉 (with the normalization constraint of the wave function)
corresponding to diagonalizing Ĥ in the space spanned by all determinants.

� In the limit of a complete basis set (M → ∞), FCI becomes exact.

� Compared to HF, FCI brings electron correlation. The correlation energy is defined as

Ec = Eexact − EHF

and is the most important quantity targeted by post-HF methods. The correlation
energy has a slow convergence with the basis size: error on Ec = O

(

M
−1

)

� Combinatorial explosion of number of determinants: Ndet ≈
(

M

N

)

= O
(

M
N
)

=⇒ necessity to find low-power-scaling approximations

� To develop approximations to FCI, we identify two regimes of electron correlation:
dynamic (or weak) correlation and static (or strong) correlation
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Post-HF methods for dynamic/weak correlation: single-reference methods

� Correlation is called “dynamic” or “weak” if cai , c
ab
ij , ...≪ c0

=⇒ HF is a good starting point

� This corresponds to situations with a large HOMO-LUMO HF gap.
Example: He atom, H2 molecule at equilibrium distance.

� B Even if each coefficient is small, their total contribution can be large.

� For dynamic correlation, one considers“single-reference”methods which are
approximations to FCI assuming the predominance of the single HF determinant.

� Three main families of single-reference post-HF methods:

� Truncated configuration interaction (CI)
� Møller-Plesset (MP) perturbation theory (PT)
� Coupled-cluster (CC) theory
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Single-reference truncated configuration interaction (CI)

� The FCI wave function is truncated at a given excitation level, e.g. keeping only
single and double excitations (CISD):

|ΨCISD〉 = |Φ〉+
occ
∑

i

vir
∑

a

c
a
i |Φa

i 〉+
occ
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i<j

vir
∑

a<b

c
ab
ij |Φab

ij 〉

Remark: it was chosen c0 = 1 (intermediate normalization)

� The coefficients cai , c
ab
ij are found by minimizing the CISD energy

ECISD = 〈ΨCISD|Ĥ|ΨCISD〉 =⇒ according to the variational theorem: ECISD ≥ Eexact.

� Computational cost = O
(

M
6
)

� Serious shortcoming of truncated CI: it is not size-consistent.

� We prefer methods that satisfy the size-consistency property: the total energy of a
system composed of two non-interacting fragments A and B is equal to the sum of the
total energies of the separate fragments:

E (A+ B) = E (A) + E (B)

This property is important in chemistry. There is also the related size-extensity
property: E (N) ∝ N for N → ∞ which is important for extended systems.
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Single-reference Møller-Plesset (MP) perturbation theory

� Perturbation theory starting from the HF Hamiltonian: Ĥ = ĤHF +
(

Ŵee − V̂
HF
Hx

)

� The first-order wave function (MP1) includes only doubly excited determinants:

|ΨMP1〉 =
occ
∑

i<j

vir
∑

a<b

c
ab,(1)
ij |Φab

ij 〉 with c
ab,(1)
ij = − 〈Φab

ij |Ŵee|Φ〉
εa + εb − εi − εj

where εk are HF orbital energies.

� The second-order energy gives the MP2 correlation energy:

E
MP2
c = 〈Φ|Ŵee|ΨMP1〉 = −

occ
∑

i<j

vir
∑

a<b

|〈Φab
ij |Ŵee|Φ〉|2

εa + εb − εi − εj

� MP2 is not variational (EMP2 can be lower than Eexact) but is size-consistent.

� Computational cost = O
(

M
5
)

� MP2 is a simple largely used post-HF method that often reasonably accounts for
dynamic/weak correlation.

� However, accuracy is limited by missing higher-order terms.
Including higher-order terms (MP3, MP4, etc...) can be computationally costly and the
series does not generally converge!
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Single-reference coupled-cluster (CC) theory

� In CC, the wave function is taken as an exponential of a truncated excitation
expansion, e.g. with single and double excitations (CCSD):

|ΨCCSD〉 = e
T̂1+T̂2 |Φ〉

where T̂1 =
occ
∑

i

vir
∑

a

t
a
i ĉ

†
a ĉi and T̂2 =

occ
∑

i<j

vir
∑

a<b

t
ab
ij ĉ

†
a ĉ

†
b ĉj ĉi are operators generating

singly and doubly excited determinants when acting on the HF wave function |Φ〉.
� The CCSD wave function contains all excited determinants of the FCI wave

function, but the coefficients of triply, quadruply, etc.. excited determinants are
(antisymmetrized) products of the coefficients of singly and doubly excited determinants.

� The amplitudes t
a
i and t

ab
ij are found by projecting the Schrödinger equation

Ĥ|ΨCCSD〉 = E |ΨCCSD〉 onto 〈Φa
i | and 〈Φab

ij |.
� CCSD is not variational (ECCSD can be lower than Eexact) but is size-consistent.

� Computational cost = O
(

M
6
)

� CCSD is more accurate than MP2 because it contains higher-order terms.

� Possiblity to perturbatively add the triple-excitation operator T̂3 in the expansion
=⇒ CCSD(T) which is often considered as the gold-standard for dynamic/weak
correlation with computational cost = O

(

M
7
)

.
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Post-HF methods for static/strong correlation: multi-reference methods

� Correlation is called “static” or “strong” if there are some coefficients in the FCI
expansion that are not small compared to c0 =⇒ HF is NOT a good starting point

� This corresponds to situations with a small HOMO-LUMO HF gap.
Example: Be atom, H2 molecule at dissociation, transition metals (Fe, Cu, etc...).

� Single-reference methods give too much importance to the HF determinant and
tend to fail for static/strong correlation (e.g., MP2 diverges for zero HOMO-LUMO
HF gap).

� Instead of HF, we use now the multiconfiguration self-consistent field (MCSCF)
method which is a multideterminant extension of HF:

EMCSCF = min
{cn,ψi}

〈ΨMCSCF|Ĥ|ΨMCSCF〉 with |ΨMCSCF〉 =
∑

n

cn|Φn〉

Usually, we include all determinants |Φn〉 that can be generated from a small orbital
subspace, called complete active space (CAS) =⇒ accounts for static/strong
correlation but combinatorial explosion with the size of the active space!

� Starting from MCSCF, remaining dynamic/weak correlation can be added with

multi-reference (MR) methods:

� MRCI (Ex: MRCISD): not size-consistent but used for very small systems
� MRPT (Ex: CASPT2, NEVPT2): fairly used but requires large enough CAS
� MRCC: several proposed methods but no consensual method yet
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Other methods/developments for electron correlation

For static/strong correlation:

� Static/strong correlation effets can sometimes be approximately describe by allowing
symmetry breaking (mostly spin symmetry) in the wave function.
Example: restricted HF (RHF) −→ unrestricted HF (UHF)

� A lot of attempts to build compact correlated wave functions based on the idea of
electron pairs, e.g. using geminals φi (x1, x2) instead of orbitals.

� Recent works on systematically approaching FCI (or MCSCF) wave functions by
density-matrix renormalization group (DMRG) method in which the
high-dimensional coefficient tensor in the determinant expansion is decomposed as
products of low-dimensional tensors.

For basis convergence and large systems:

� A lot of progress to overcome the slow basis convergence of the post-HF methods by
explicitly correlated methods (or F12 methods) consisting in extending the virtual
space with geminals of the form f (r12)φi (x1)φj(x2) where f (r12) is an explicit function of
the interelectronic distance r12.

� Active development of linear-scaling post-HF methods for large systems by using
localized orbitals and truncating the number of excitations with a spatial distance
criterion.
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3 Quantum Monte Carlo (QMC)
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Kohn-Sham (KS) density-functional theory (DFT)

� In KS DFT, the exact energy is expressed as a minimum over single-determinant wave
functions Φ:

E = min
Φ

{

〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

where EHxc[nΦ] is a functional of the density nΦ(x1) = N

∫

|Φ(x1, x2, ..., xN)|2dx2...dxN

� The functional is decomposed as EHxc[n] = EH[n] + Exc[n] with a Hartree contribution

EH[n] =
1

2

x
n(x1)n(x2)

|r2 − r1|
dx1dx2 and an exchange-correlation contribution Exc[n].

� The energy minimization with respect to the spin orbitals leads to the KS equations:
(

−1

2
∆r + vne(r) + vH(r) + vxc(x)

)

ψi (x) = εiψi (x)

with the Hartree potential vH(r) and the exchange-correlation potential vxc(x)

vH(r) =

∫

n(x′)

|r′ − r|dx
′ and vxc(x) =

δExc[n]

δn(x)

and the density n(x) =
∑N

i=1 |ψi (x)|2.

� KS DFT is almost as simple as HF and yet it can in principle give the exact energy
including correlation. In practice, we need approximations for Exc[n].
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Approximations for Exc[n]

� In the local-density approximation (LDA), Exc[n] is expressed as a local functional:

E
LDA
xc [n] =

∫

n(r) ǫunifxc (n(x)) dr

where ǫunifxc (n) is the xc energy per particle of the uniform-electron gas.

� In the generalized-gradient approximations (GGA), we introduce the density gradient:

E
GGA
xc [n] =

∫

f (n(x),∇rn(x)) dr

where f is a function chosen so as to fulfil exact conditions, and often with empirical
parameters (Example: BLYP, PBE).

� In the meta-GGA approximations, we introduce the density Laplacian and/or
kinetic-energy density τ(x) = −(1/2)

∑N

i=1 |∇rψi (x)|2

E
meta-GGA
xc [n, τ ] =

∫

f (n(x),∇rn(x),∆rn(x), τ(x)) dr

which constitutes a slight extension of KS DFT (Example: TPSS).

� Non-local orbital-dependent approximations involving the orbitals ψi [n](x) (and orbital
energies εi [n]) considered themselves as functionals of the density: exact exchange
(EXX), Görling-Levy perturbation theory, random-phase approximation (RPA), ...
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WFT+DFT hybrid methods

� In the multideterminant extension of KS DFT, the exact energy is expressed as a
minimum over multideterminant wave functions Ψ:

E = min
Ψ

{

〈Ψ|T̂ + V̂ne + λŴee|Ψ〉+ Ē
λ

Hxc[nΨ]
}

with one arbitrary parameter 0 ≤ λ ≤ 1 and the complement density functional:

Ē
λ

Hx[n] = (1− λ)EHx[n] and Ē
λ

c [n] = Ec[n]− λ
2
Ec[n1/λ]

where n1/λ(r) = (1/λ3)n(r/λ) is a scaled density.

� Possible approximations for |Ψ〉:
� Single determinant: |Ψ〉 ≈ |Φ〉 =⇒ HF+DFT hybrid approximations:

Exc = λE
HF
x [Φ] + (1− λ)Ex[n] + Ē

λ

c [n]

where λ is the fraction of HF exchange (empirically, λ ≈ 0.25).
Popular approximations in this family: B3LYP, PBE0.

� Single-reference PT =⇒ MP2+DFT double-hybrid approximations:

Exc = λE
HF
x [Φ] + λ

2
E

MP2
c + (1− λ)Ex[n] + Ē

λ

c [n]

which have been actively developed over the last 10 years.

� Variational multideterminant wave function: |Ψ〉 = ∑

n cn|Φn〉
=⇒ MCSCF+DFT hybrid approximations
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WFT+DFT range-separated hybrid methods

� An alternative multideterminant extension of KS DFT is based on a range separation
of e-e interaction:

E = min
Ψ

{

〈Ψ|T̂ + V̂ne + Ŵ
lr
ee|Ψ〉+ E

sr
Hxc[nΨ]

}

with a long-range interaction Ŵ
lr
ee =

∑

i<j

erf(µ|rj − ri |)
|rj − ri |

a short-range density functional E sr
Hxc[n]

and an arbitrary parameter µ controlling the range of the separation.

� Possible approximations for |Ψ〉:
� Single determinant: |Ψ〉 ≈ |Φ〉 =⇒ lrHF+srDFT hybrid approximations:

Exc = E
lr,HF
x [Φ] + E

sr
x [n] + E

sr
c [n]

Approximations in this family are often referred to as RSH or LC.

� Single-reference PT/CC =⇒ lrMP2/lrRPA+srDFT double-hybrid
approximations:

Exc = E
lr,HF
x [Φ] + E

lr,MP2/RPA
c + E

sr
x [n] + E

sr
c [n]

� Variational multideterminant wave function: |Ψ〉 = ∑

n cn|Φn〉
=⇒ lrMCSCF+srDFT hybrid approximations
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Other DFT-like methods

More simple DFT methods:

� Density-functional tight binding (DFTB): simplified KS-DFT method in which matrix
elements are empirically parametrized
=⇒ useful for large systems

� Orbital-free DFT: the total energy is written as a functional of the density without

using any orbitals: E = min
n

E [n]

=⇒ appealing but approximations not accurate enough for quantum chemistry

More sophisticated DFT-like methods:

� Reduced density-matrix functional theory (RDMFT): the total energy is written as a

functional of the reduced one-particle density matrix γ1(x, x
′): E = min

γ1
E [γ1]

=⇒ under active development

� Variational reduced two-electron density matrix theory: the total energy is written

with the reduced two-particle density matrix Γ2(x1, x2; x
′
1, x

′
2): E = min

Γ2
E [Γ2]

=⇒ natural approach but we do not know the N-representability conditions for the
reduced two-electron density matrix Γ2
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The simplest QMC method: Variational Monte Carlo (VMC)

� VMC is a method for calculating numerically the multidimensional integrals of
quantum mechanics. For example, for the energy:

E = 〈Ψ|Ĥ|Ψ〉 =
∫

dR Ψ(R)2 EL(R) ≈
1

M

M
∑

k=1

EL(Rk) = 〈EL〉

where EL(R) = [H(R)Ψ(R)]/Ψ(R) is the local energy

and Rk are points randomly sampled from Ψ(R)2 using the Metropolis algorithm.

� According to the central-limit theorem, the statistical error on 〈EL〉 is proportional to
√

V [EL]/M where V [EL] is the variance of EL =⇒ slow decrease as 1/
√
M but

independent from the number of electrons!

� The advantage of VMC is the great flexibility in the form of the wave function Ψ
=⇒ We can use compact wave functions including weak and strong correlations, for
example:

Ψ(R) = J(R)
∑

n

cnΦn(R)

where J(R) = e

∑
i<j f (rij ) is a Jastrow factor depending explicitly on e-e distances and

Φn(R) are Slater determinants.

� A lot of on-going work to develop efficient methods to optimize the wave-function
parameters in VMC and calculating properties other than the energy.
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A more sophisticated QMC method: Diffusion Monte Carlo (DMC)

� The exact ground-state wave function Ψ0 can be obtained from an arbritary starting
wave function Ψ (with 〈Ψ0|Ψ〉 6= 0) by using the imaginary-time evolution operator:

|Ψ0〉 ∝ lim
t→∞

e
−Ĥ t |Ψ〉

� This is translated in position space, after multiplying by Ψ(R), by repeated application
of the importance-sampling Green function G for a finite time step τ :

Ψ0(R)Ψ(R) ∝ lim
M→∞

∫

dR1...dRM G (R,RM ; τ) G (RM ,RM−1; τ)...G (R2,R1; τ)Ψ(R1)
2

allowing us to use a short-time approximation to the Green function G .

� This is realized by a Metropolis-like algorithm generating a weighted random walk

which, after an equilibration phase, samples Ψ0(R)Ψ(R) ≈ ∑M

k=1 wkδ(R− Rk)

In practice, to avoid large variations of the weights, we introduce a population of
walkers performing parallel random walks with a birth-death (or branching)
process. The population size must be controlled to avoid explosion or extinction.

� Knowing Ψ0(R)Ψ(R), the exact ground-state energy E0 can be calculated as:

E0 = 〈Ψ0|Ĥ|Ψ〉 =
∫

dR Ψ0(R)Ψ(R) EL(R) ≈
M
∑

k=1

wkEL(Rk)
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DMC: The fermion sign problem and the fixed-node approximation

� Because we apply the Green function using finite sampling in position space, the
antisymmetry of the starting wave function Ψ is not preserved during the iterations
and we actually converge to the symmetric bosonic ground-state wave function ΨB

which has a lower energy than the fermionic ground-state Ψ0.
=⇒ This is known as the fermion sign problem.

� Even if the antisymmetry is imposed, at any given point R the algorithm equally samples
+Ψ0(R) and −Ψ0(R) which gives a zero average =⇒ this is another manifestation of
the fermion sign problem.

� To avoid the fermion sign problem, we use the fixed-node (FN) approximation
corresponding to adding infinite potential barriers located at the nodes of the
starting wave function (i.e., for Ψ(R) = 0)

HFN(R) = H(R) + lim
λ→∞

λ δ(Ψ(R))

The FN-DMC algorithm then converges to the FN wave function ΨFN which is the
best variational approximation to Ψ0 having the same nodes than the approximate
Ψ used.

� Correspondingly, we obtain the FN energy: EFN = 〈ΨFN|ĤFN|Ψ〉 = 〈ΨFN|Ĥ|Ψ〉 ≥ E0

� Work still needed for calculation of derivatives of EFN for optimization of parameters or
for obtaining properties.
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Some other QMC methods

� While FN-DMC only samples the mixed distribution ΨFN(R)Ψ(R), there are also less
used QMC methods sampling the pure distribution ΨFN(R)

2 such as reptation quantum
Monte Carlo.

� Auxiliary-field QMC method: DMC-like method working in the space of Slater
determinants with a fixed-phase approximation

� FCI-QMC method: simple DMC-like method working in the space of Slater
determinants living with fermion sign problem
=⇒ a lot of interest since 2009 but exponential scaling computational cost

� Several versions of stochastic MP2 algorithm: the Laplace-transform expression of the
MP2 correlation energy is evaluated by random sampling
=⇒ computational cost with a important prefactor but smaller scaling with the system
size
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