

MULTI-REFERENCE DFT BY LONG-RANGE/SHORT-RANGE SEPARATION

Julien TOULOUSE, François COLONNA, Andreas SAVIN

Laboratoire de Chimie Théorique, 4 place Jussieu, 75252 PARIS, FRANCE

ABSTRACT: In electronic structure calculations using Density Functional Theory (DFT) within the Kohn-Sham (KS) scheme, near-degeneracy correlation effects are generally not properly described by the current approximate energy functionals. In fact, whereas the KS scheme is based on a non-interacting reference system having a single determinant as wave-function, near-degeneracy requires the explicit consideration of several determinants. This can be achieved by introducing long-range electron-electron interactions into the reference system. The multi-determinantal reference wave-function obtained in this way is then combined with a density functional approximation for the remaining short-range correlation effects. Compared to previous studies, we propose in this work a more efficient separation of long-range and short-range interactions improving the accuracy of the method.

Generalized Kohn-Sham scheme Introduction Long-range/short-range separation Electronic correlation is generally treated by: The standard Kohn-Sham scheme of DFT consists in treating ex-The modified electron-electron interaction $\hat{V}_{ee}^{\mu} = \sum_{i < j} v_{ee}^{\mu}(r_{ij})$ is plicitly only the KS non-interacting system ($\mu = 0$) and adding a chosen so as to incorporate the long-range part of the interaction. DFT **Wave-Function methods** functional correction to recover the physical system ($\mu \rightarrow \infty$). • based on the Kohn-Sham (KS) • based directly on the physical Therefore, the wave-function Ψ^{μ} of the effective system (3), infictitious non-interacting system system Instead, we can use the partially interacting system at intermediate corporating only long-range interactions, is expected to be well • systematic improvement • no systematic improvement μ (equation 3) as the reference system. approximated by an expansion into a few determinants corre-

• near-degeneracy is not explicitly	• near-degeneracy is easily treated
treated	
• local correlation effects are well	• a long expansion of determi-
treated	nants is needed to treat local cor-
	relation

These two approaches can be combined via the adiabatic connection procedure to take advantage of both of them.

Adiabatic connection

Adiabatic connections [1] connect the KS system to the physical system by continuously switching on the electron-electron interaction \hat{V}_{ee}^{μ} according to a parameter μ varying, e.g., from 0 to ∞ :

At $\mu = 0$, KS non-interacting system:

 $(\hat{T} + \hat{V}_{KS}) |\Phi\rangle = E_{KS} |\Phi\rangle$

At $\mu \to \infty$, physical interacting system:

 $(\hat{T} + \hat{V}_{ee} + \hat{V}_{ne}) |\Psi\rangle = E |\Psi\rangle$

At intermediate μ , **partially interacting system**:

the density *n* remains equal to the physical one.

The ground-state electronic energy of the physical system can indeed be expressed with the ground-state wave-function of the partially interacting system Ψ^{μ} as

$$E = \langle \Psi^{\mu} | \hat{T} + \hat{V}^{\mu}_{ee} + \hat{V}_{ne} | \Psi^{\mu} \rangle + \bar{F}^{\mu} [n_{\Psi^{\mu}}]$$
(4)

where $\bar{F}^{\mu}[n]$ is the required density functional correction incorporating the part of the interaction not included in the reference system.

Whereas the reference wave-function in the standard KS scheme is a single determinant, the reference wave-function Ψ^{μ} in this generalized scheme is a multi-determinantal wave-function, which can naturally incorporate near-degeneracy correlation effects.

In practice, the Generalized Kohn-Sham scheme consists in solving a fictitious partially interacting system (equation 3) by standard wave-function methods (MCSCF, CI) and then adding a remaining correction through a functional $\bar{F}^{\mu}[n]$ (equation 4).

The method constitutes a rigorous intermediate between the standard one-determinant DFT ($\mu = 0$)

$$E = \langle \Phi | \hat{T} + \hat{V}_{ne} | \Phi \rangle + \bar{F}^{\mu=0}[n_{\Phi}]$$
(5)

and the traditional multi-determinantal wave-function formulation of the electronic problem $(\mu \to \infty)$

$$E = \langle \mathbf{y} \mathbf{f} | \hat{T} + \hat{V} + \hat{V} | \mathbf{y} \mathbf{f} \rangle \tag{6}$$

sponding to near-degeneracy effects, whereas local approximations for the functional $\bar{F}^{\mu}[n]$, describing only the remaining shortrange correlation, are expected to be accurate.

Short-range interactions are better removed in erfgau.

Short-range functional

The short-range functional $\bar{F}^{\mu}[n]$ is decomposed as

 $\bar{F}^{\mu}[n] = \bar{U}^{\mu}[n] + \bar{E}^{\mu}_{xc}[n]$ (7)

where $\bar{U}^{\mu}[n]$ is the short-range Hartree energy and $\bar{E}_{xc}^{\mu}[n]$ is the remaining unknown short-range exchange-correlation functional.

The Local Density Approximation (LDA) is used for $\bar{E}_{xc}^{\mu}[n]$

$$\bar{E}_{xc}^{\mu}[n] = \int n(\mathbf{r})\bar{\varepsilon}_{xc}^{\mu}(n(\mathbf{r}))d\mathbf{r}$$
(8)

where $\bar{\varepsilon}_{xc}^{\mu}(n)$ are taken from the uniform electron gas with modified

	$\mathbf{D} = \langle \mathbf{I} \mathbf{I} + \mathbf{V} \boldsymbol{\theta} \boldsymbol{\theta} + \mathbf{V} \boldsymbol{\eta} \boldsymbol{\theta} \mathbf{I} \rangle \tag{0}$	interaction.
$\left(\hat{T} + \hat{V}^{\mu}_{ee} + \hat{V}^{\mu}\right) \Psi^{\mu}\rangle = E^{\mu} \Psi^{\mu}\rangle \tag{3}$		While the exchange energy
	The mixing of both approaches is controlled with the parameter μ	While the exchange energy of
where $\hat{V}^{\mu} = \sum_{i} v^{\mu}(\mathbf{r}_{i})$ is the local external potential ensuring that	which sets the proportion of electron-electron interaction treated by	ically, the correlation energy

(1)

(2)

Accurate reference calculations

For several atoms, the potentials $v^{\mu}(\mathbf{r})$ keeping the density constant along adiabatic connections, appearing in the definition of the partially interacting systems (equation 3), are accurately computed for the erf [6] and erfgau interactions by a maximization procedure.

It is then possible to compute accurate short-range exchange and correlation energies, e.g. for He and Be, along the adiabatic connections and assess the accuracy of the LDA approximation.

Applications

wave-function methods and by density functional approximations.

Two-electron integrals with modified interactions as well as corresponding LDA short-range functionals have been implemented into Molpro 2002 [7].

The method is applied on He and Be where the effective Hamiltonian (3) is solved with the CI program of Molpro for increasingly configuration spaces.

y density $\bar{\varepsilon}_x^{\mu}(n)$ can be calculated analytgy density $\bar{\varepsilon}_x^{\mu}(n)$ is obtained from a fit of Coupled-Cluster RPA [4] or FHNC [5] data, incorporating theoretical conditions.

Conclusions and perspectives

- We have proposed a method which rigorously combines a multideterminant wave-function incorporating near-degeneracy effects with a density functional for the remaining local correlation effects.
- This combination is based on the separation of correlation effects into long-range and short-range interactions.
- In practice, the parameter μ controls the mixing between wavefunction and DFT.
- At optimal μ , the method takes advantage of both approaches and leads to accurate ground-state total atomic energies.
- Compared to erf, the long-range/short-range separation is better realized with erfgau and leads to better total energies at the optimal μ , validating the strategy of long-range/short-range separation.
- The short-range functionals can be improved (inclusion of gradients of the density,...)
- Other forms of modified electron-electron interactions can be tested.

For both exchange and correlation:

- The LDA approximation becomes more accurate on increasing of μ .
- Compared to erf, the LDA functional for erfgau reaches the accurate curve at a higher energy (in absolute value).

- Figure 8: Total CI+DFT energy of **Be** Figure 9: Total CI+DFT energy of **Be** with erf interaction. with erfgau interaction.
- There is an optimal μ for which the method is more accurate than standard DFT ($\mu = 0$) and wave-function treatments ($\mu \rightarrow \infty$).
- Inclusion of more than one configuration in the reference wavefunction is important for Be where near-degeneracy effects are strong.
- At the optimal μ , erfgau is more accurate than erf.

References

- [1] A. Savin, F. Colonna and R. Pollet, Int. J. Quantum. Chem. 93, 166 (2003).
- [2] T. Leininger, H. Stoll, H.-J. Werner and A. Savin, Chem. Phys. Lett. 275, 151 (1997).
- [3] R. Pollet, A. Savin, T. Leininger and H. Stoll, J. Chem. Phys. 4, 1250 (2002).
- [4] D. L. Freeman, Phys. Rev. B 15, 5512 (1977).
- [5] H. J. Flad, Private communication.
- [6] R. Pollet, F. Colonna, T. Leininger, H. Stoll, H.-J. Werner and A. Savin, Int. J. Quantum. Chem. 91, 84 (2003).
- [7] MOLPRO, a package of ab initio programs designed by H.-J. Werner and P. J. Knowles, version 2002.2 (2002).