Simulating molecular properties on a quantum computer

Bruno Senjean

Lorentz Institute (Leiden), Vrije University (Amsterdam)
Supervisors: Tom O'Brien (Leiden), Luuk Visscher (Amsterdam)

VU

Exponential wall problem in Quantum Chemistry

Exponential wall problem in Quantum Chemistry

Electronic Schrödinger Equation:

$$
\hat{H}\left|\Psi_{j}\right\rangle=E_{j}\left|\Psi_{j}\right\rangle
$$

Second Quantized Hamiltonian (finite basis of M orbitals):

$$
\hat{H}=\sum_{p q}^{M} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}+\frac{1}{2} \sum_{p q r s}^{M}(p q \mid r s) \hat{a}_{p}^{\dagger} \hat{a}_{r}^{\dagger} \hat{a}_{s} \hat{a}_{q}
$$

Exponential wall problem in Quantum Chemistry

Electronic Schrödinger Equation:

$$
\hat{H}\left|\Psi_{j}\right\rangle=E_{j}\left|\Psi_{j}\right\rangle
$$

Second Quantized Hamiltonian (finite basis of M orbitals):

$$
\hat{H}=\sum_{p q}^{M} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}+\frac{1}{2} \sum_{p q r s}^{M}(p q \mid r s) \hat{a}_{p}^{\dagger} \hat{a}_{r}^{\dagger} \hat{a}_{s} \hat{a}_{q}
$$

Fock space with spanned by 2^{M} many-particle states $\quad|\Psi\rangle=\sum_{i}^{2^{M}} c_{i}\left|\Phi_{i}\right\rangle$
Hamiltonian matrix of size $2^{M} \times 2^{M}$

Exponential wall problem in Quantum Chemistry

> Electronic Schrödinger Equation:

$$
\hat{H}\left|\Psi_{j}\right\rangle=E_{j}\left|\Psi_{j}\right\rangle
$$

Second Quantized Hamiltonian (finite basis of M orbitals):

$$
\hat{H}=\sum_{p q}^{M} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}+\frac{1}{2} \sum_{p q r s}^{M}(p q \mid r s) \hat{a}_{p}^{\dagger} \hat{a}_{r}^{\dagger} \hat{a}_{s} \hat{a}_{q}
$$

Fock space with spanned by 2^{M} many-particle states $\quad|\Psi\rangle=\sum_{i}^{2^{M}} c_{i}\left|\Phi_{i}\right\rangle$ Hamiltonian matrix of size $2^{M} \times 2^{M}$

Alternatives:

- Truncate the number of many-particle states (CISD, CCSD(T), CAS, SCI, ...)
- Quantum Monte Carlo
- Reduced quantities (density, 1RDM, Green's function)
- Embedding

Exponential wall problem in Quantum Chemistry

Electronic Schrödinger Equation:

$$
\hat{H}\left|\Psi_{j}\right\rangle=E_{j}\left|\Psi_{j}\right\rangle
$$

Second Quantized Hamiltonian (finite basis of M orbitals):

$$
\hat{H}=\sum_{p q}^{M} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}+\frac{1}{2} \sum_{p q r s}^{M}(p q \mid r s) \hat{a}_{p}^{\dagger} \hat{a}_{r}^{\dagger} \hat{a}_{s} \hat{a}_{q}
$$

Fock space with spanned by 2^{M} many-particle states $\quad|\Psi\rangle=\sum_{i}^{2^{M}} c_{i}\left|\Phi_{i}\right\rangle$

$$
\text { Hamiltonian matrix of size } 2^{M} \times 2^{M}
$$

- Truncate the number of many-partir in polynomial time?
- Reducout can we do FCowi, Green's function)
- EmbeBut can

Alternatives:

- Quantum Monte Carlo

Quantum Computers: Origins

Richard Feynman 1981:
"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy"

Quantum Computers: Origins

Richard Feynman 1981:
"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy"

50th birthday of the Laboratoire de Chimie Quantique de Strasbourg:
Alain Dedieu and Jean-Marie Lehn gave historical conferences about the state of the art of quantum chemistry at the time... using PUNCH CARDS!

Quantum Computers: Origins

Richard Feynman 1981:
"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy"

October 23, 2019: Google claims quantum advantage on 53-qubit device.
For a particular problem:
Sampling the output distribution of random quantum circuits

Quantum Computers: Exponential speed-up

Replace classical bit (either 0 or 1) with qubit (superposition of $|0\rangle$ and $|1\rangle$) M-qubit state is a superposition of 2^{M} states

Quantum Computers: Exponential speed-up

Replace classical bit (either 0 or 1) with qubit (superposition of $|0\rangle$ and $|1\rangle$) M-qubit state is a superposition of 2^{M} states

Example with 3 qubits:

$$
|\Psi\rangle=\frac{1}{\sqrt{8}}(|000\rangle+|001\rangle+|010\rangle+|011\rangle+|100\rangle+|101\rangle+|110\rangle+|111\rangle)
$$

Quantum Computers: Exponential speed-up

Replace classical bit (either 0 or 1) with qubit (superposition of $|0\rangle$ and $|1\rangle$)

M-qubit state is a superposition of 2^{M} states

Example with 3 qubits:

$$
\begin{array}{r}
|\Psi\rangle=\frac{1}{\sqrt{8}}(|000\rangle+|001\rangle+|010\rangle+|011\rangle+|100\rangle+|101\rangle+|110\rangle+|111\rangle) \\
\quad \text { Example with 4 qubits: } \\
|\Psi\rangle=\frac{1}{\sqrt{16}}(|0000\rangle+|0001\rangle+|0010\rangle+|0011\rangle+|0100\rangle+|0101\rangle+|0110\rangle+|0111\rangle+ \\
|1000\rangle+|1001\rangle+|1010\rangle+|1011\rangle+|1100\rangle+|1101\rangle+|1110\rangle+|1111\rangle)
\end{array}
$$

Quantum Computers: Exponential speed-up

Replace classical bit (either 0 or 1) with qubit (superposition of $|0\rangle$ and $|1\rangle$)

M-qubit state is a superposition of 2^{M} states

Example with 3 qubits:

$$
\begin{gathered}
|\Psi\rangle=\frac{1}{\sqrt{8}}(|000\rangle+|001\rangle+|010\rangle+|011\rangle+|100\rangle+|101\rangle+|110\rangle+|111\rangle) \\
\text { Example with } 4 \text { qubits: } \\
|\Psi\rangle=\frac{1}{\sqrt{16}}(|0000\rangle+|0001\rangle+|0010\rangle+|0011\rangle+|0100\rangle+|0101\rangle+|0110\rangle+|0111\rangle+ \\
|1000\rangle+|1001\rangle+|1010\rangle+|1011\rangle+|1100\rangle+|1101\rangle+|1110\rangle+|1111\rangle) \\
\text { Example with } 5 \text { qubits: }
\end{gathered}
$$

$$
\begin{array}{r}
|\Psi\rangle=\frac{1}{\sqrt{32}}(|00000\rangle+|00001\rangle+|00010\rangle+|00011\rangle+|00100\rangle+|00101\rangle+|00110\rangle+|00111\rangle+|01000\rangle+|01001\rangle+|01010\rangle+|01011\rangle+|01100\rangle+|01101\rangle+|01110\rangle+|01111\rangle+ \\
|10000\rangle+|10001\rangle+|10010\rangle+|10011\rangle+|10100\rangle+|10101\rangle+|10110\rangle+|10111\rangle+|11000\rangle+|11001\rangle+|11010\rangle+|11011\rangle+|11100\rangle+|11101\rangle+|11110\rangle+|11111\rangle)
\end{array}
$$

Quantum Corollary to Moore's law:
double power for every additional qubit

Quantum Circuits

Example: 3-qubit state

$$
|\Psi\rangle=\frac{1}{\sqrt{8}}(|000\rangle+|001\rangle+|010\rangle+|011\rangle+|100\rangle+|101\rangle+|110\rangle+|111\rangle)
$$

$|0\rangle$

$$
|0\rangle
$$

$$
|0\rangle
$$

Quantum Circuits

Example: 3-qubit state

Quantum Circuits

Example: 3-qubit state

Quantum Circuits

Example: 3-qubit state

$$
|\Psi\rangle=\frac{1}{\sqrt{8}}(|000\rangle+|001\rangle+|010\rangle+|011\rangle+|100\rangle+|101\rangle+|110\rangle+|111\rangle)
$$

Quantum Chemistry and Quantum Computer

Quantum Chemistry and Quantum Computer

Encode the spin-orbital occupation into the qubit state:

$$
|\Psi\rangle=\sum_{n_{1} \ldots n_{i} \ldots n_{M}} C_{n_{1} \ldots n_{i} \ldots n_{M}}\left|n_{1} \ldots n_{i} \ldots n_{M}\right\rangle \quad\left|n_{1} \ldots n_{M}\right\rangle=\left(\hat{c}_{1}^{\dagger}\right)^{n_{1}} \ldots\left(\hat{c}_{M}^{\dagger}\right)^{n_{M}}|\mathrm{vac}\rangle
$$

$|0\rangle$ and $|1\rangle \rightarrow$ unoccupied/occupied spin-orbital $\rightarrow M$ spin-orbitals $\equiv M$ qubits

Quantum Chemistry and Quantum Computer

Encode the spin-orbital occupation into the qubit state:

$$
|\Psi\rangle=\sum_{n_{1} \ldots n_{i} \ldots n_{M}} C_{n_{1} \ldots n_{i} \ldots n_{M}}\left|n_{1} \ldots n_{i} \ldots n_{M}\right\rangle \quad\left|n_{1} \ldots n_{M}\right\rangle=\left(\hat{c}_{1}^{\dagger}\right)^{n_{1}} \ldots\left(\hat{c}_{M}^{\dagger}\right)^{n_{M}}|\mathrm{vac}\rangle
$$

$|0\rangle$ and $|1\rangle \rightarrow$ unoccupied/occupied spin-orbital $\rightarrow M$ spin-orbitals $\equiv M$ qubits

Mapping the second quantized Hamiltonian into a qubit Hamiltonian:

$$
\hat{H}=\sum_{p q}^{M} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}+\frac{1}{2} \sum_{p q r s}^{M}(p q \mid r s) \hat{a}_{p}^{\dagger} \hat{a}_{r}^{\dagger} \hat{a}_{s} \hat{a}_{q}=\sum_{i=1}^{M^{4}} h_{i} \hat{P}_{i} \quad \hat{P}_{i} \in\{I, X, Y, Z\}^{\otimes M}
$$

Jordan-Wigner transformation

$$
\begin{aligned}
& \hat{a}_{i}^{\dagger}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)_{1} \otimes \ldots \otimes\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)_{i-1} \otimes\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)_{i} \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)_{i+1} \otimes \ldots \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)_{M} \\
& \hat{a}_{i}=\underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)_{1} \otimes \ldots \otimes\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)_{i-1}}_{Z^{\otimes i-1}} \otimes \underbrace{\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)_{i}}_{I^{\otimes M-i}} \otimes \underbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)_{i+1} \otimes \ldots \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)_{M}}
\end{aligned}
$$

Quantum Phase Estimation (QPE)

Goal: Estimate the phase $E_{j} t$ of the unitary operator $U=e^{\mathrm{i} \hat{H} t}$ with $e^{\mathrm{i} \hat{H} t}\left|\Psi_{j}\right\rangle=e^{\mathrm{i} E_{j} t}\left|\Psi_{j}\right\rangle$ with precision given by the number of ancilla qubits

Two qubit registers: one encoding the state and the other composed of ancilla qubits
Start with Hartree-Fock!

Quantum Phase Estimation (QPE)

Hadamard gates to create Superposition

$$
\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \ldots \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \sum_{j} a_{j}\left|\Psi_{j}\right\rangle
$$

$$
=\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1}|k\rangle \sum_{j} a_{j}\left|\Psi_{j}\right\rangle
$$

Quantum Phase Estimation (QPE)

Hadamard gates
to create
Superposition

$$
\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} \sum_{j} a_{j} e^{\mathrm{i} E_{j} t k}|k\rangle\left|\Psi_{j}\right\rangle
$$

Quantum Phase Estimation (QPE)

Hadamard gates to create
Superposition

Controlled-Unitaries leading to

Inverse Quantum
Fourier Transform

$$
\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} \sum_{j} a_{j} e^{\mathrm{i} E_{j} t k}|k\rangle\left|\Psi_{j}\right\rangle \longrightarrow \sum_{j} a_{j}\left|E_{j} t\right\rangle\left|\Psi_{j}\right\rangle
$$

Quantum Phase Estimation (QPE)

Hadamard gates to create
Superposition
Controlled-Unitaries leading to

Inverse Quantum
Fourier Transform

$$
\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} \sum_{j} a_{j} e^{\mathrm{i} E_{j} t k}|k\rangle\left|\Psi_{j}\right\rangle \longrightarrow \sum_{j} a_{j}\left|E_{j} t\right\rangle\left|\Psi_{j}\right\rangle
$$

Quantum Phase Estimation (QPE)

Hadamard gates to create
Superposition
Controlled-Unitaries leading to

Inverse Quantum
Fourier Transform

Variational Quantum Eigensolver (VQE)

Variational principle:

$$
E_{0}=\min _{\vec{\theta}}\langle\Psi(\vec{\theta})| \hat{H}|\Psi(\vec{\theta})\rangle
$$

A. Peruzzo et al. Nat. Commun. 5, 4213 (2014).

Variational Quantum Eigensolver (VQE)

Variational principle:

$$
E_{0}=\min _{\vec{\theta}}\langle\Psi(\vec{\theta})| \hat{H}|\Psi(\vec{\theta})\rangle
$$

A. Peruzzo et al. Nat. Commun. 5, 4213 (2014).

Variational Quantum Eigensolver (VQE)

Classical Device

Mean-Field calculation
Second quantized Hamiltonian
Transformation to qubit Hamiltonian

$$
\hat{H}=\sum_{i} h_{i} \hat{P}_{i}
$$

Initialize parameters $\vec{\theta}$

Variational principle:

$$
E_{0}=\min _{\vec{\theta}}\langle\Psi(\vec{\theta})| \hat{H}|\Psi(\vec{\theta})\rangle
$$

State preparation:

$$
|\Psi(\vec{\theta})\rangle=U(\vec{\theta})\left|\Phi_{0}\right\rangle
$$

Quantum Device

Variational Quantum Eigensolver (VQE)

Classical Device

Mean-Field calculation

Second quantized Hamiltonian
Transformation to qubit Hamiltonian

$$
\hat{H}=\sum_{i} h_{i} \hat{P}_{i}
$$

Initialize parameters $\vec{\theta}$

Quantum Device
A. Peruzzo et al. Nat. Commun. 5, 4213 (2014).

Variational Quantum Eigensolver (VQE)

Classical Device

Mean-Field calculation
Second quantized Hamiltonian Transformation to qubit Hamiltonian

$$
\hat{H}=\sum_{i} h_{i} \hat{P}_{i}
$$

Initialize parameters $\vec{\theta}$

Quantum Device
A. Peruzzo et al. Nat. Commun. 5, 4213 (2014).

Variational principle:

$$
E_{0}=\min _{\vec{\theta}}\langle\Psi(\vec{\theta})| \hat{H}|\Psi(\vec{\theta})\rangle
$$

State preparation:

$$
|\Psi(\vec{\theta})\rangle=U(\vec{\theta})\left|\Phi_{0}\right\rangle
$$

Measurement:

$$
\begin{gathered}
P\left(\sum_{i} m_{i}=1 \bmod 2 \mid R(\hat{P})\right)=\frac{1}{2}(1-\langle\hat{P}\rangle) \\
E(\vec{\theta})=\sum_{i} h_{i}\left\langle\hat{P}_{i}\right\rangle_{\vec{\theta}}
\end{gathered}
$$

Variational Quantum Eigensolver (VQE)

Classical Device

Mean-Field calculation
Second quantized Hamiltonian Transformation to qubit Hamiltonian

$$
\hat{H}=\sum_{i} h_{i} \hat{P}_{i}
$$

Initialize parameters $\vec{\theta}$

State preparation Measurement

Quantum Device

A. Peruzzo et al. Nat. Commun. 5, 4213 (2014).

Variational principle:

$$
E_{0}=\min _{\vec{\theta}}\langle\Psi(\vec{\theta})| \hat{H}|\Psi(\vec{\theta})\rangle
$$

State preparation:

$$
|\Psi(\vec{\theta})\rangle=U(\vec{\theta})\left|\Phi_{0}\right\rangle
$$

Measurement:

$$
\begin{gathered}
P\left(\sum_{i} m_{i}=1 \bmod 2 \mid R(\hat{P})\right)=\frac{1}{2}(1-\langle\hat{P}\rangle) \\
E(\vec{\theta})=\sum_{i} h_{i}\left\langle\hat{P}_{i}\right\rangle_{\vec{\theta}}
\end{gathered}
$$

Geometry Optimization, H_{2} (minimal basis)

Geometry Optimization, H_{2} (minimal basis)

First-order derivative: Hellmann-Feynman theorem

$$
\frac{\partial E_{0}}{\partial \lambda}=\left\langle\Psi_{0}\right| \frac{\partial \hat{H}}{\partial \lambda}\left|\Psi_{0}\right\rangle \longrightarrow \sum_{i} \underbrace{\frac{\partial h_{i}}{\partial \lambda}}_{\text {classically }} \underbrace{\left\langle\Psi_{0}\right| \hat{P}_{i}\left|\Psi_{0}\right\rangle}_{\mathrm{VQE}}
$$

Geometry Optimization, H_{2} (minimal basis)

First-order derivative: Hellmann-Feynman theorem

T. E. O'Brien, BS et al. npj Quantum Inf 5, 113 (2019) ; O'Malley et al. PRX 6, 031007 (2016)

Geometry Optimization, H_{2} (minimal basis)

First-order derivative: Hellmann-Feynman theorem

T. E. O'Brien, BS et al. npj Quantum Inf 5, 113 (2019) ; O'Malley et al. PRX 6, 031007 (2016)

Geometry Optimization on H_{2}

T. E. O'Brien, BS et al. npj Quantum Inf 5, 113 (2019)

Polarizability of H_{2}

Dipole moment operator breaks symmetry,
transformation to two-qubit no longer valid
T. E. O'Brien, BS et al. npj Quantum Inf 5, 113 (2019)

Perspectives

Quantum advantage is now a question of "when" and not "if"...

1. Find new algorithms for near-term/long-term quantum computers:

> Excited states, Hybrids (embedding ? CASSCF?)
2. Optimize existing algorithms:
measurements, ansatz, ancillas...
3. Quantum Chemistry side:

Better embedding methods, Basis set error ... E. Giner teaser ... :)
4. But:

Cannot copy data (hard drives), and not always advantageous

Acknowledgments

- Tom O'Brien
- Luuk Visscher
- Saad Yalouz
- Xavier Bonet-Monroig
- Francesco Buda
- Carlo Beenakker (and group)
- Leo DiCarlo (and group)

Acknowledgments

- Tom O'Brien
- Luuk Visscher
- Saad Yalouz
- Xavier Bonet-Monroig
- Francesco Buda

And you for your kind attention
and Happy New Year!

- Carlo Beenakker (and group)
- Leo DiCarlo (and group)

