

DFT-based exchange vertex for the correlation energy and excited states

Maria Hellgren,¹ Lucas Baguet¹ Nicola Colonna,² Stefano de Gironcoli,² Ulf von Barth³

¹CNRS, SU Paris, ²SISSA Trieste, ³Lund University

Outline

Why beyond RPA and GW?

DFT-based exchange vertex

Excited states from $GW\Gamma_x$

GS energy for molecules and solids

Conclusions

Why beyond RPA and GW?

- RPA (DFT propagators), GW (dressed many-body propagators)
- Energy differences often good but correlation energies are too large
- van der Waals forces are underestimated
- Strong correlation
- Solution: a proper vertex correction

DFT-based exchange vertex

Adiabatic connection formula for the total energy with density fixed ($H = T + V_{ext} + V_{Hxc} + \lambda W - V^{\lambda}$)

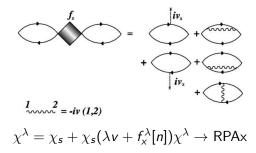
$$E = T_s + \int nv_{ext} + E_{Hx} - \frac{i}{2} \int d\lambda \operatorname{Tr}\{v\chi^{\lambda}(\omega) - v\chi_s(\omega)\}$$

The scaled response function can be obtained from TDDFT (or MBPT)

$$\chi^{\lambda} = \chi_{s} + \chi_{s} (\lambda v + f_{xc}^{\lambda}[n]) \chi^{\lambda}$$

The level of approximation is determined by f_{xc}^{λ} :

$$f_{xc}^{\lambda} = \frac{\delta v_{xc}^{\lambda}}{\delta n}, \ f_{xc}^{\lambda} = 0 \Rightarrow RPA$$



DFT-based exchange vertex

The exact-exchange (EXX) kernel f_x

$$f_{\mathsf{x}} = \frac{\delta \mathsf{v}_{\mathsf{x}}}{\delta \mathsf{n}} \; \Rightarrow \; \chi_{\mathsf{s}} f_{\mathsf{x}} \chi_{\mathsf{s}} = \mathsf{H}$$

Diagrammatic structure:

DFT-based exchange vertex

Apply a local approximation to the self-energy

$$\Gamma = 1 + \frac{\delta \Sigma}{\delta V} \approx 1 + \frac{\delta v_{xc}}{\delta V} = 1 + f_{xc} \chi_s + f_{xc} \chi_s f_{xc} \chi_s + \dots$$

With $f_x \leftrightarrow \Gamma_x$ the total energy can be re-written as

$$E = T_s + \int nv_{ext} + E_H - \frac{i}{2} \int \frac{d\lambda}{\lambda} \operatorname{Tr}\{\Sigma_s^{\lambda}(\omega)G_s(\omega)\}$$

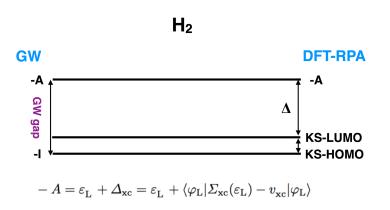
where

$$\Sigma_s = G_s W \Gamma_x, \quad W = v + v P W, \quad P = -iG_s G_s \Gamma_x$$

DFT-based exchange vertex

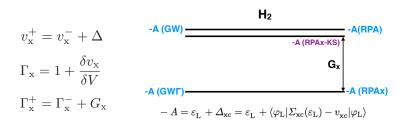
• RPAx:
$$\Gamma_x = 1 + f_x \chi_s \Gamma_x$$

$$E_c = E_c^{\mathrm{RPA}} + \frac{\mathrm{i}}{\mathrm{i}} \underbrace{(\cdots)}_{c} + \frac{\mathrm{i}}{\mathrm{i}} \underbrace{(\cdots)}_{c} + \frac{\mathrm{i}}{\mathrm{i}} \underbrace{(\cdots)}_{c} + \cdots$$

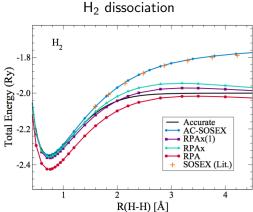

• SOSEX: $\Gamma_x = 1 + f_x \chi_s$ but keep $W = W^{RPA}$

• RPAx(1):
$$\Gamma_x = 1 + f_x \chi_s$$

• N⁴ scaling as RPA

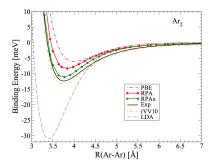


Excited states from $GW\Gamma_x$


Excited states from $GW\Gamma_x$

Spectral properties of strongly correlated systems relies on a dynamical discontinuity in the DFT-vertex (beyond EXX)

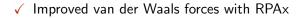
GS energy for molecules and solids

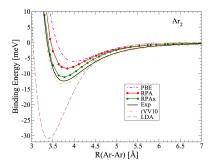

10 / 16

 $\begin{array}{c} \mbox{Why beyond RPA and GW?} \\ \mbox{DFT-based exchange vertex} \\ \mbox{Excited states from } GW\Gamma_{x} \\ \mbox{GS energy for molecules and solids} \\ \mbox{Conclusions} \end{array}$

GS energy for molecules and solids

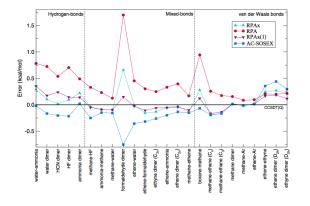
✓ Improved van der Waals forces with RPAx


Atomic C₆ coefficients


_	Atom	RPA	RPAx	Litt.
_	He	1.21	1.41	1.46
	Ne	5.52	6.19	6.38
	Ar	53.7	63.2	64.3
	Be	142	235	214
	Mg	386	634	627

Obtained with self-consistent RPA/RPAx orbitals $\begin{array}{c} \mbox{Why beyond RPA and GW?} \\ \mbox{DFT-based exchange vertex} \\ \mbox{Excited states from } GW\Gamma_{x} \\ \mbox{GS energy for molecules and solids} \\ \mbox{Conclusions} \end{array}$

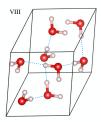
GS energy for molecules and solids


	CE (meV)	AE
LDA	140	51
RPA	68	21
RPAx	87	2
RPAx(1)	89	0
AC-SOSEX	93	4
Exp.	89	

 $\begin{array}{c} \mbox{Why beyond RPA and GW?} \\ \mbox{DFT-based exchange vertex} \\ \mbox{Excited states from } GW\Gamma_{x} \\ \mbox{GS energy for molecules and solids} \\ \mbox{Conclusions} \end{array}$

GS energy for molecules and solids

Molecular test-set including hydrogen and van der Waals bonds



RPA: MA%E: 23% (0.44 kcal/mol)— **RPAx(1)**: MA%E: 8% (0.13 kcal/mol)

GS energy for molecules and solids

Lattice energies (kJ/mol)

Method	lh	VIII
Exp.	58.9	56.0(57.4)
RPAx	58.7	56.4
SOSEX	61.0	59.2
RPA	51.9	49.1
PBE-TS	68.9	59.7

Conclusions

- The DFT-EXX kernel provides a systematic improvement on RPA and unifies different MBPT approximations
- RPAx gives very accurate total energies and van der Waals forces
- Excited states are accessible provided DFT-discontinuities are taken into account
- First efficient plane-wave implementation for solids

References

- MH, U. von Barth, Phys. Rev. B 78, 115107 (2008)
- MH, U. von Barth, J. Chem. Phys. 132, 044101 (2010)
- N. Colonna, MH, S. de Gironcoli, Phys. Rev. B 90, 125150 (2014)
- N. Colonna, MH, S. de Gironcoli, Phys. Rev. B 93, 195108 (2016)
- MH, N. Colonna, S. de Gironcoli, Phys. Rev. B 98, 045117 (2018)
- MH, Eur. Phys. J. B 91, 155 (2018)

Thank you for your attention!