Overview of selected configuration interaction and its coupling with DFT

E.Giner

Laboratoire de chimie théorique, Paris

WFT in a nutshell ..

- Basis set B ⇔ Hydrogen-like functions centered on atoms
- Use Slater determinants for the N_e -particle basis set: $\Psi^{\mathcal{B}}(\mathbf{r}_1, \dots, \mathbf{r}_{N_e}) = \sum_{I} c_I \ \psi_I^{\mathcal{B}}(\mathbf{r}_1, \dots, \mathbf{r}_{N_e})$
- Try to solve $\hat{H} \Psi^{\mathcal{B}}(\mathbf{r}_1, \dots, \mathbf{r}_{N_e}) = E \Psi^{\mathcal{B}}(\mathbf{r}_1, \dots, \mathbf{r}_{N_e})$
- A clear target: the FCI

$$E_{\mathsf{FCI}}^{\mathcal{B}} = \min_{\Psi^{\mathcal{B}}} \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{v}_{ne} | \Psi^{\mathcal{B}} \rangle$$

 $\Psi^{\mathcal{B}}$ a is a fully flexible wave function within \mathcal{B}

- Approximated WFT methods :
 - Who are $\psi_{\mathrm{I}}^{\mathcal{B}}$?
 - How to find $c_{\rm I}$?
 - How to determine *E* ?

3 questions leads to MANY WFT methods ...

(Some) Acronyms for Wave Function Theory ...

- HF, MP2, CEPA-n, CISD(SC)², CCSD(T), BCCD(T), EOM-CCSD(T), PNO-CCSD(T), DLPNO-CCSD(T), ...
- CASCI, CASSCF, MCSCF, MRMP2, XMCQDPT, CASPT2, MS-CASPT2, NEVPT2, SC-NEVPT2, PC-NEVPT2, QD-NEVPT2, JMMRPT2, ...
- CIPSI, HBCI, MPS, DMRG, FCIQMC, *i*FCIQMC, ACI, SORCI, DDCI, FOBOCI, ...
- SS-MRCC, SU-MRCC, VU-MRCC, JM-MRCC, Mk-MRCCSDT, ic-MRCC, ...

Why so many acronyms ?

- Do theoretical chemists love to produce more ? (ego issue ?)
- Chemistry is very heterogeneous:
 - Different **properties** to compute $(E, \nabla E, \text{ etc } ...)$
 - Different size of systems $(10^1 \rightarrow 10^3 \text{ electrons})$
 - Different states (ground/excited state, spin symmetry ...)
 - Different correlation (weak and/or strong)
 - Chemical accuracy (≈ 1 mH, 0.02 eV, 300 K)
- Within B: what is the answer of selected CI to
 - Who are $\psi_{\mathrm{I}}^{\mathcal{B}}$?
 - How to find $c_{\rm I}$?
 - How to determine *E* ?
 - What computational scaling with $N_{\mathcal{B}}$?
- What outside **B**?
 - \Rightarrow chemical accuracy and link with DFT

4

3 ∃ > < ∃ >

Some history of selected CI in quantum chemistry

Selected CI: use a **selection** based on \hat{H} **Natural** idea (re)**discovered** and (slightly) improved **MANY** times

- Bender, Davidson, 1969
- Bender, Davidson, 1969
- Malrieu et al, 1973 (CIPSI)
- Buenker et al, 1978
- Malrieu et al, 1983 (CIPSI)
- Cimiraglia, 1985 (CIPSI)
- Angeli et al, 1997 (CIPSI)
- Hanrath et al, 2001
- Sherill *et al*, 2005
- Bunge *et al*, 2006
- Ruedenberg *et al*, 2009 (CEEIS)

- Toulouse group, 2013-2020 (CIPSI for QMC and stochastic PT2)
- Umrigar *et al*, 2016-2020 (HCl and stochastic PT2)
- Liu et al, 2016 (iCl)
- Evangelista *et al*, 2017 (ACI: CIPSI with another name ... ?)
- Hasegawa et al, 2017

• ...

The concept of selection in WFT

- Selection a priori:
 - You can predict exactly who are the $\psi_{\mathrm{I}}^{\mathcal{B}}$
 - Ex: all singles and doubles on top of HF, CASCI space, etc ...
 - Ex: CISD, CCSD, CCSD(T), MP2, CASSCF, NEVPT2, ...
- Selection without a priori
 - You cannot predict who are the $\psi_{\mathrm{I}}^{\mathcal{B}}$
 - Ex: selection by perturbation, random walk in $\psi_{\mathrm{I}}^{\mathcal{B}}$ space, etc ...
 - Ex: selected CI (CIPSI, HCI, blablabla), FCI-QMC, etc ...

- Not always adapted : user dependency 🙂
 - Strong / weak correlation and their coupling ? (CCSD(T) enough/adapted ?)
 - Choice of the active space ? (Am I missing physics ?)
- Targets essentially a polynomial subspace of FCI
- Clear target: mathematical optimization ©
 - Compute only $\langle \psi_{\rm I} | \hat{H} | \psi_{\rm J} \rangle \neq 0$ (exploit strong sparsity of \hat{H})
 - Complex parametrization ($e^{\hat{T}}|HF\rangle$, $\sum_{I} c_{I} e^{\hat{T}_{I}}|\psi_{I}\rangle$, etc ...)
 - **Good properties**: size extensivity/spin multiplet degeneracy Ex: CISD died, CCSD took over because of size extensivity

Selection without "A priori"

- When affordable: essentially the FCI solution ©
 - Very trusty and black box
 - Handle strong / weak correlation and their coupling
- Targets the whole FCI space ©
 - Exponentially large target
 - $\bullet\,$ But " not so many" $|\psi_{\rm I}\rangle$ matter at the end \ldots
- No A priori knowledge: Linear parametrization
 - *i.e.* CI expansion, not CC expansion
 - Simple equations (CI + MRPT2 for instance)
 - Much less simple to make it efficient
- If not converged:
 - Size consistency issue
 - Bad error cancellations for energy differences

8

4 B 6 4 B 6

The CIPSI-like algorithm (1)

Starting with a guess WF: $|\Psi^{(0)}\rangle = \sum_{I=1}^{N^{(0)}} c_I |\psi_I\rangle$ do k = 0, $N_{iterations}$

- Look at all **connected** determinants $|\mu\rangle$: $\langle \mu | \hat{H} | \Psi^{(k)} \rangle \neq 0$ \Rightarrow single or double excitation on top of any $|\psi_I\rangle$
- **2** Compute the **perturbative energy** contribution ϵ_{μ}
- **Sort all the** $|\mu\rangle$ by energy contribution ϵ_{μ}
- Select the "n" most important ones
- **O Diagonalize** \hat{H} in the **new set of determinants** : $N^{(k+1)} = N^{(k)} + n$

• You have a new reference WF :

$$|\Psi^{(k+1)}\rangle = \sum_{I=1}^{N^{(k+1)}} c_I |\psi_I\rangle$$

end do

The perturbative and variational energy

At a given **iteration**, one has a given $|\Psi\rangle$:

• Variational energy

$$E_{Var} = rac{\langle \Psi | \hat{H} | \Psi
angle}{\langle \Psi | \Psi
angle}$$

Second order Perturbative energy

$$E_{PT2} = \sum_{\mu} \epsilon_{\mu}$$
$$\epsilon_{\mu} = \frac{\left(\langle \mu | \hat{H} | \Psi \rangle\right)^{2}}{E_{Var} - \langle \mu | \hat{H} | \mu \rangle}$$

CIPSI energy ≡ E_{Var} + E_{PT2}
 ⇒ approximation of the FCI energy

Example: a cyanine ground and excited state

Frozen core FCI:

- 18 e in 111 MOs
- FCI space: $\approx 10^{24} \psi_{\rm I}$
- ΔE stabilized within 0.02 eV $\approx 2 \times 10^6 \psi_{\rm I}$

What can you obtain with CIPSI-like algorithms

- FCI quality whatever the level of correlation for gd/excited
- Modest basis (DZ) and molecules (4/5 non-hydrogen atoms) (See Loos *et al* 2018, 2019 with ≈ 400 FCI transition energies)
- Validation of methods in complex situations (Loos *et al* 2019 for doubly exc states and Giner *et al* 2019 for Cu²⁺ systems)
- QMC trial wave functions (a lot of litterature)
- Large CASSCF calculations (Umrigar et al)
- Caffarel / Chicago go in the direction of solid state

CIPSI available in QP2: stand-alone open source program https://quantum-package.readthedocs.io/en/master/

- A lot of WFT tools
- All ingredients for DFT

- Developer friendly
- Check the Youtube videos :)

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD(T)/cc-pVTZ	6.06	6.84	14.25	2
CCSD(T)/cc-pVQZ	2.50	2.86	6.75	9
CCSD(T)/cc-pV5Z	1.28	1.46	3.46	21

What are we missing ?

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD(T)/cc-pVTZ	6.06	6.84	14.25	2
CCSD(T)/cc-pVQZ	2.50	2.86	6.75	9
CCSD(T)/cc-pV5Z	1.28	1.46	3.46	21

What are we missing ?

Mainly short-range correlation effects of course

13

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD(T)/cc-pVTZ	6.06	6.84	14.25	2
CCSD(T)/cc-pVQZ	2.50	2.86	6.75	9
CCSD(T)/cc-pV5Z	1.28	1.46	3.46	21

What are we missing ?

Mainly short-range correlation effects of course

CCSD(T)+PBE/cc-pVTZ 0.85 1.11, 2,64, 36,

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD(T)/cc-pVTZ	6.06	6.84	14.25	2
CCSD(T)/cc-pVQZ	2.50	2.86	6.75	9
CCSD(T)/cc-pV5Z	1.28	1.46	3.46	21

What are we missing ?

Mainly short-range correlation effects of course

CCSD(T)+PBE/cc-pVTZ 0.85 1.11, 2.64, 2.36,

Collaborators on selected CI and WFT/DFT

selected CI

- Anthony Scemama (LCPQ)
- Michel Caffarel (LCPQ)
- P. F. Loos (LCPQ)
- Yan Garniron (LCPQ)
- coupling WFT/DFT
 - Julien Toulouse (LCT)
 - P. F. Loos (LCPQ)
 - Barthélémy Pradines (LCT)

- Anouar Benali (Chicago)
- Kevin Gasperich (Chicago)
- Anthony Ferté (LCPMR)

- Anthony Ferté (LCPMR)
- Rolland Assaraf (LCT)
- Anthony Scemama (LCPQ)

Exact conditions in WFT: the electron-electron cusp

• Exact wave function $\Psi(\mathbf{r}_1, \dots, \mathbf{r}_N)$ satisfies $\forall (\mathbf{r}_1, \dots, \mathbf{r}_N)$

$$H \ \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) = E \ \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N)$$
$$\left(-\frac{1}{2}\sum_{i=1}^N \Delta_{\mathbf{r}_i} + \sum_{i=1}^N v_{ne}(\mathbf{r}_i) + \sum_{i>j} \frac{1}{\mathbf{r}_{ij}}\right) \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) = E \ \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N)$$

• **Divergence** of coulomb interaction **near** $r_{12} \approx 0$

$$\lim_{r_{12}\to 0} \frac{1}{r_{12}} = +\infty$$

- $H \Psi(\mathbf{r}_1, \ldots, \mathbf{r}_N)$ must remain finite $\forall (\mathbf{r}_1, \ldots, \mathbf{r}_N)$:
 - \Rightarrow The kinetic energy must compensate !
 - \Rightarrow **Discontinuity** in first-derivative !
- Cusp in the electronic wave function

Exact conditions in WFT: the electron-electron cusp

• Expansion of the exact Ψ around $r_{12} \approx 0$:

$$\Psi(\mathbf{r}_1, \mathbf{r}_{12}) = \underbrace{\Psi(\mathbf{r}_1, 0)}_{\text{System dependant}} \left(1 + \underbrace{\frac{1}{2} \mathbf{r}_{12}}_{\text{Universal }!} + \dots\right)$$

- Valid for any fermionic systems
- For instance the Uniform Electron Gaz
- Expansion of **truncated** $\Psi^{\mathcal{B}}$ around $r_{12} \approx 0$

$$\Psi^{\mathcal{B}}(\mathbf{r}_1, r_{12}) = \Psi^{\mathcal{B}}(\mathbf{r}_1, 0) (1 + \underbrace{\mathbf{0} \times \mathbf{r}_{12}}_{\text{no cusp }!} + \dots)$$

• One solution: F₁₂ methods

$$\Psi^{\mathcal{B}}_{\mathsf{F}_{12}}(\mathbf{r}_1, r_{12}) = f(r_{12})\Psi^{\mathcal{B}}(\mathbf{r}_1, r_{12})$$

• Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp

18

• Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp

18

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction
- $\Psi^{\mathcal{B}}$ could come from a **non-divergent interaction**

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction
- $\Psi^{\mathcal{B}}$ could come from a **non-divergent interaction**

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction
- $\Psi^{\mathcal{B}}$ could come from a **non-divergent interaction**
- Truncation of $\mathcal{B} \Leftrightarrow \hat{W}_{ee}^{\mathcal{B}}$ does not diverge !!

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction
- $\Psi^{\mathcal{B}}$ could come from a **non-divergent interaction**
- Truncation of $\mathcal{B} \Leftrightarrow \hat{W}_{ee}^{\mathcal{B}}$ does not diverge !!

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction
- $\Psi^{\mathcal{B}}$ could come from a **non-divergent interaction**
- Truncation of $\mathcal{B} \Leftrightarrow \hat{W}_{ee}^{\mathcal{B}}$ does not diverge !!

We know a DFT framework which looks like that ! :)
 ⇒ Range Separated DFT (RS-DFT)

• Hybrid WFT/DFT scheme (ex: range-separated hybrid)

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$w_{ee}^{\mathsf{lr}}(r_{12};\mu) = \frac{\mathsf{erf}(\mu r_{12})}{r_{12}}$$

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

 $w_{ee}^{\mathsf{lr}}(r_{12};\mu) = \frac{\mathsf{erf}(\mu r_{12})}{r_{12}}$

 μ : **tunable** parameter

■ No divergence ⇔ no cusp in WFT!

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

 $w_{ee}^{lr}(r_{12};\mu) = \frac{\operatorname{erf}(\mu r_{12})}{r_{12}}$

 μ : **tunable** parameter

■ No divergence ⇔ no cusp in WFT!

• DFT: small r₁₂ effects !

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$w_{ee}^{\mathsf{lr}}(r_{12};\mu) = \frac{\mathsf{erf}(\mu r_{12})}{r_{12}}$$

- No divergence ⇔ no cusp in WFT!
- DFT: small r₁₂ effects !
- μ: controls the mixing between WFT/DFT

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$w_{ee}^{\mathsf{lr}}(r_{12};\mu) = \frac{\mathsf{erf}(\mu r_{12})}{r_{12}}$$

- No divergence ⇔ no cusp in WFT!
- DFT: small r₁₂ effects !
- μ: controls the mixing between WFT/DFT
- Pb:

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$w_{ee}^{\mathsf{lr}}(r_{12};\mu) = \frac{\mathsf{erf}(\mu r_{12})}{r_{12}}$$

- No divergence ⇔ no cusp in WFT!
- DFT: small r₁₂ effects !
- μ : controls the mixing between WFT/DFT
- Pb:
 - Self-interaction errors .. ?

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$w_{ee}^{lr}(r_{12};\mu) = \frac{erf(\mu r_{12})}{r_{12}}$$

- No divergence ⇔ no cusp in WFT!
- DFT: small r₁₂ effects !
- μ : controls the mixing between WFT/DFT
- Pb:
 - Self-interaction errors .. ?
 - which μ .. ?

RS-DFT in a nutshell ...

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$w_{ee}^{lr}(r_{12};\mu) = \frac{erf(\mu r_{12})}{r_{12}}$$

μ : **tunable** parameter

- No divergence ⇔ no cusp in WFT!
- DFT: small r₁₂ effects !
- μ : controls the mixing between WFT/DFT
- Pb:
 - Self-interaction errors .. ?
 - which μ .. ?
 - choice of the functional .. ?

Idea: taking RS-DFT only for basis set error

In practice

- Formalism to merge WFT in B and DFT
- Define properly a non diverging interaction within $\ensuremath{\mathcal{B}}$
- Fit it with the interaction used in RS-DFT
- Use RS-DFT functionals ! :)

The Levy-Lieb formalism of DFT

$$E_{0} = \min_{n(\mathbf{r})} \left\{ \underbrace{F[n(\mathbf{r})]}_{positive} + \underbrace{(v_{ne}|n)}_{negative} \right\}$$

• Nuclei-electron interaction energy:

$$(v_{ne}|n) = \int d\mathbf{r} v_{ne}(\mathbf{r}) n(\mathbf{r})$$

⇒ system dependent

• Levy-Lieb universal density functional:

$$F[n(\mathbf{r})] = \min_{\Psi \to n(\mathbf{r})} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle$$

- universal : holly grail of DFT !
- Here Ψ is developed in a complete basis set

Decomposition of $F[\overline{n^{\mathcal{B}}(\mathbf{r})}]$

$$F[n] = \min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle$$

• We split $F[n(\mathbf{r})]$ using \mathcal{B} :

$$F[n(\mathbf{r})] = \underbrace{\min_{\boldsymbol{\Psi}^{\mathcal{B}} \to n(\mathbf{r})} \langle \boldsymbol{\Psi}^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} | \boldsymbol{\Psi}^{\mathcal{B}} \rangle}_{\text{within } \mathcal{B}} + \underbrace{\bar{\mathcal{E}}^{\mathcal{B}}[n(\mathbf{r})]}_{\text{outside } \mathcal{B}}$$
(1)

聞 と く き と く き と … き

$$F[n] = \min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle$$

• We split $F[n(\mathbf{r})]$ using \mathcal{B} :

$$F[n(\mathbf{r})] = \underbrace{\min_{\boldsymbol{\Psi}^{\mathcal{B}} \to n(\mathbf{r})} \langle \boldsymbol{\Psi}^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} | \boldsymbol{\Psi}^{\mathcal{B}} \rangle}_{\text{within } \mathcal{B}} + \underbrace{\bar{E}^{\mathcal{B}}[n(\mathbf{r})]}_{\text{outside } \mathcal{B}}$$
(1)

 $\bar{E}^{\mathcal{B}}[n(\mathbf{r})] \text{ is the complementary density functional for } \mathcal{B}:$ $\bar{E}^{\mathcal{B}}[n(\mathbf{r})] = \min_{\Psi \to n(\mathbf{r})} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle - \min_{\Psi^{\mathcal{B}} \to n(\mathbf{r})} \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}} \rangle$

 $\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$ must recover what is missing in $\Psi^{\mathcal{B}}$

$$F[n] = \min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle$$

• We split $F[n(\mathbf{r})]$ using \mathcal{B} :

$$F[n(\mathbf{r})] = \min_{\substack{\Psi^{\mathcal{B}} \to n(\mathbf{r}) \\ \text{within } \mathcal{B}}} \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}} \rangle + \underbrace{\bar{E}^{\mathcal{B}}[n(\mathbf{r})]}_{\text{outside } \mathcal{B}}$$
(1)

 $\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$ is the complementary density functional for \mathcal{B} :

$$\bar{\mathcal{E}}^{\mathcal{B}}[n(\mathbf{r})] = \min_{\Psi \to n(\mathbf{r})} \langle \Psi | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee} | \Psi \rangle - \min_{\Psi^{\mathcal{B}} \to n(\mathbf{r})} \langle \Psi^{\mathcal{B}} | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee} | \Psi^{\mathcal{B}} \rangle$$

 $\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$ must recover what is missing in $\Psi^{\mathcal{B}}$ • $\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$ not universal, but a functional of the density !

• Using the previous decomposition:

$$E_{0} = \min_{n(\mathbf{r})} \left\{ \min_{\Psi^{\mathcal{B}} \to n(\mathbf{r})} \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}} \rangle + (v_{ne}|n) + \bar{E}^{\mathcal{B}}[n(\mathbf{r})] \right\}$$
(2)

23

- ∢ ≣ →

• Using the previous decomposition:

$$E_{0} = \min_{n(\mathbf{r})} \left\{ \min_{\Psi^{\mathcal{B}} \to n(\mathbf{r})} \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}} \rangle + (v_{ne}|n) + \bar{E}^{\mathcal{B}}[n(\mathbf{r})] \right\}$$
(2)

• Needs to perform a minimization over $n(\mathbf{r})$

• Using the previous decomposition:

$$E_{0} = \min_{n(\mathbf{r})} \left\{ \min_{\Psi^{\mathcal{B}} \to n(\mathbf{r})} \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}} \rangle + (v_{ne}|n) + \bar{E}^{\mathcal{B}}[n(\mathbf{r})] \right\}$$
(2)

- Needs to perform a minimization over $n(\mathbf{r})$
- But FCI densities are really good !

• Using the previous decomposition:

$$E_{0} = \min_{n(\mathbf{r})} \left\{ \min_{\Psi^{\mathcal{B}} \to n(\mathbf{r})} \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}} \rangle + (v_{ne}|n) + \bar{E}^{\mathcal{B}}[n(\mathbf{r})] \right\}$$
(2)

- Needs to perform a minimization over $n(\mathbf{r})$
- But FCI densities are really good !
- Evaluation of (2) at $n(\mathbf{r}) = n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r})$: final equation

$$E_0 \approx \langle \Psi_{\text{FCI}}^{\mathcal{B}} | H | \Psi_{\text{FCI}}^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}} [n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r})]$$
(3)

• Using the previous decomposition:

$$E_{0} = \min_{n(\mathbf{r})} \left\{ \min_{\Psi^{\mathcal{B}} \to n(\mathbf{r})} \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}} \rangle + (v_{ne}|n) + \bar{\mathcal{E}}^{\mathcal{B}}[n(\mathbf{r})] \right\}$$
(2)

- Needs to perform a minimization over $n(\mathbf{r})$
- But FCI densities are really good !
- Evaluation of (2) at $n(\mathbf{r}) = n_{\Psi_{FCI}^{\mathcal{B}}}(\mathbf{r})$: final equation

$$E_0 \approx \langle \Psi_{\mathsf{FCI}}^{\mathcal{B}} | H | \Psi_{\mathsf{FCI}}^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}} [n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}} (\mathbf{r})]$$
(3)

• Only approximation here :

$$n_0(\mathbf{r}) \approx n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}(\mathbf{r})$$
 much weaker than $\Psi_0 \approx \Psi_{\mathsf{FCI}}^{\mathcal{B}}$

• Using the previous decomposition:

$$E_{0} = \min_{n(\mathbf{r})} \left\{ \min_{\Psi^{\mathcal{B}} \to n(\mathbf{r})} \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}} \rangle + (v_{ne}|n) + \bar{E}^{\mathcal{B}}[n(\mathbf{r})] \right\}$$
(2)

- Needs to perform a minimization over $n(\mathbf{r})$
- But FCI densities are really good !
- Evaluation of (2) at $n(\mathbf{r}) = n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r})$: final equation

$$E_0 \approx \langle \Psi_{\mathsf{FCI}}^{\mathcal{B}} | H | \Psi_{\mathsf{FCI}}^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}} [n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}} (\mathbf{r})]$$
(3)

• Only approximation here :

 $n_0(\mathbf{r}) \approx n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}(\mathbf{r})$ much weaker than $\Psi_0 \approx \Psi_{\mathsf{FCI}}^{\mathcal{B}}$

Ē^B[n_{Ψ^B_{FCI}}(**r**)] must recover what is missing in B
 ⇒ a large part is short-range correlation effects !

• Using the previous decomposition:

$$E_{0} = \min_{n(\mathbf{r})} \left\{ \min_{\Psi^{\mathcal{B}} \to n(\mathbf{r})} \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}} \rangle + (v_{ne}|n) + \bar{E}^{\mathcal{B}}[n(\mathbf{r})] \right\}$$
(2)

- Needs to perform a minimization over $n(\mathbf{r})$
- But FCI densities are really good !
- Evaluation of (2) at $n(\mathbf{r}) = n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r})$: final equation

$$E_0 \approx \langle \Psi_{\text{FCI}}^{\mathcal{B}} | H | \Psi_{\text{FCI}}^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}} [n_{\Psi_{\text{FCI}}^{\mathcal{B}}} (\mathbf{r})]$$
(3)

• Only approximation here :

 $n_0(\mathbf{r}) \approx n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}(\mathbf{r})$ much weaker than $\Psi_0 \approx \Psi_{\mathsf{FCI}}^{\mathcal{B}}$

- $\bar{E}^{\mathcal{B}}[n_{\Psi^{\mathcal{B}}_{FCI}}(\mathbf{r})]$ must recover what is missing in \mathcal{B} \Rightarrow a large part is short-range correlation effects !
- Question: how to find $\bar{E}^{\mathcal{B}}[n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r})]$?

Idea: taking RS-DFT only for basis set error

In practice

- Formalism to merge WFT in ${\cal B}$ and DFT $\textcircled{\mbox{\scriptsize o}}$
- \bullet Define properly a non diverging interaction within ${\cal B}$
- Fit it with the interaction used in RS-DFT
- Use RS-DFT functionals

• Expectation value of \hat{W}_{ee} over $\Psi^{\mathcal{B}}$ as an integral real space

$$\langle \boldsymbol{\Psi}^{\mathcal{B}} | \hat{\boldsymbol{W}}_{ee} | \boldsymbol{\Psi}^{\mathcal{B}} \rangle = \frac{1}{2} \iint d\mathbf{r}_1 d\mathbf{r}_2 \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n_2^{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$$

25

< ≣ ⊁

 \bullet Expectation value of $\hat{\mathcal{W}}_{ee}$ over $\Psi^{\mathcal{B}}$ as an integral real space

$$\langle \boldsymbol{\Psi}^{\mathcal{B}} | \hat{\boldsymbol{\mathcal{W}}}_{ee} | \boldsymbol{\Psi}^{\mathcal{B}} \rangle = \frac{1}{2} \iint d\mathbf{r}_1 d\mathbf{r}_2 \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n_2^{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$$

Consider \$\hbegin{pmatrix} \mathcal{B}_{ee} = \frac{1}{2}\$ \$\sum_{ijkl \infty} \vee B\$ \$\begin{pmatrix} k_{ij}^k \hfita_{j}^k \hfita_

• Expectation value of \hat{W}_{ee} over $\Psi^{\mathcal{B}}$ as an integral real space

$$\langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}_{ee} | \Psi^{\mathcal{B}} \rangle = \frac{1}{2} \iint d\mathbf{r}_1 d\mathbf{r}_2 \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n_2^{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$$

- Consider \$\hbegin{pmatrix} \mathcal{B}_{ee} = \frac{1}{2}\$ \$\sum_{ijkl} \in \mathcal{B}_k\$ \$\vee V_{ij}^{kl}\$ \$\hat{a}_k^{\dagger} \hat{a}_l^{\dagger} \hat{a}_j \hat{a}_i\$ in real space (operator in Fock space \$\mathcal{\infty}\$ distributions in real space)
- Do some more math (distributions again ...) and end-up with

$$\langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}_{ee}^{\mathcal{B}} | \Psi^{\mathcal{B}} \rangle = \frac{1}{2} \iint d\mathbf{r}_{1} d\mathbf{r}_{2} f_{\Psi^{\mathcal{B}}}(\mathbf{r}_{1}, \mathbf{r}_{2}),$$

$$f_{\Psi^{\mathcal{B}}}(\mathbf{r}_{1}, \mathbf{r}_{2}) = \sum_{ijklmn} V_{ij}^{kl} \Gamma_{mn}^{kl} \phi_{i}(\mathbf{r}_{1}) \phi_{j}(\mathbf{r}_{2}) \phi_{m}(\mathbf{r}_{1}) \phi_{n}(\mathbf{r}_{2})$$

 \bullet Expectation value of $\hat{\mathcal{W}}_{ee}$ over $\Psi^{\mathcal{B}}$ as an integral real space

$$\langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}_{ee} | \Psi^{\mathcal{B}} \rangle = \frac{1}{2} \iint d\mathbf{r}_1 d\mathbf{r}_2 \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n_2^{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$$

- Consider \$\hbegin{matrix} \mathcal{B}_{ee} = \frac{1}{2}\$ \$\sum_{ijkl} \in \mathcal{B}_k\$ \$\vee V_{ij}^{kl}\$ \$\hat{a}_k^{\dagger} \hat{a}_l^{\dagger} \hat{a}_j \hat{a}_i\$ in real space (operator in Fock space \$\lefty\$ distributions in real space)
- Do some more math (distributions again ...) and end-up with

$$\langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}_{ee}^{\mathcal{B}} | \Psi^{\mathcal{B}} \rangle = \frac{1}{2} \iint d\mathbf{r}_{1} d\mathbf{r}_{2} f_{\Psi^{\mathcal{B}}}(\mathbf{r}_{1}, \mathbf{r}_{2}),$$

$$f_{\Psi^{\mathcal{B}}}(\mathbf{r}_{1}, \mathbf{r}_{2}) = \sum_{ijklmn} V_{ij}^{kl} \Gamma_{mn}^{kl} \phi_{i}(\mathbf{r}_{1}) \phi_{j}(\mathbf{r}_{2}) \phi_{m}(\mathbf{r}_{1}) \phi_{n}(\mathbf{r}_{2})$$

• as $\langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}_{ee} | \Psi^{\mathcal{B}} \rangle = \langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}^{\mathcal{B}}_{ee} | \Psi^{\mathcal{B}} \rangle$ one can write

$$\iint \mathrm{d}\mathbf{r}_1 \,\mathrm{d}\mathbf{r}_2 \,\frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \,n_2^{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2) = \iint \mathrm{d}\mathbf{r}_1 \,\mathrm{d}\mathbf{r}_2 \,f_{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$$

 \bullet Expectation value of $\hat{\mathcal{W}}_{ee}$ over $\Psi^{\mathcal{B}}$ as an integral real space

$$\langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}_{ee} | \Psi^{\mathcal{B}} \rangle = \frac{1}{2} \iint d\mathbf{r}_1 d\mathbf{r}_2 \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n_2^{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$$

- Consider \$\hbegin{pmatrix} \mathcal{B}_{ee} = \frac{1}{2}\$ \$\sum_{ijkl \in \mathcal{B}} \$V_{ij}^{kl}\$ \$\hbeta_{k}^{\dagger} \hbeta_{j}^{\dagger} \hbeta_{
- Do some more math (distributions again ...) and end-up with

$$\langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}_{ee}^{\mathcal{B}} | \Psi^{\mathcal{B}} \rangle = \frac{1}{2} \iint d\mathbf{r}_{1} d\mathbf{r}_{2} f_{\Psi^{\mathcal{B}}}(\mathbf{r}_{1}, \mathbf{r}_{2}),$$

$$f_{\Psi^{\mathcal{B}}}(\mathbf{r}_{1}, \mathbf{r}_{2}) = \sum_{ijklmn} V_{ij}^{kl} \Gamma_{mn}^{kl} \phi_{i}(\mathbf{r}_{1}) \phi_{j}(\mathbf{r}_{2}) \phi_{m}(\mathbf{r}_{1}) \phi_{n}(\mathbf{r}_{2})$$

• as $\langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}_{ee} | \Psi^{\mathcal{B}} \rangle = \langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}^{\mathcal{B}}_{ee} | \Psi^{\mathcal{B}} \rangle$ one can write

$$\iint d\mathbf{r}_1 d\mathbf{r}_2 \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n_2^{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2) = \iint d\mathbf{r}_1 d\mathbf{r}_2 \frac{f_{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)}{n_2^{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)} n_2^{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$$

 \bullet Expectation value of $\hat{\mathcal{W}}_{ee}$ over $\Psi^{\mathcal{B}}$ as an integral real space

$$\langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}_{ee} | \Psi^{\mathcal{B}} \rangle = \frac{1}{2} \iint d\mathbf{r}_1 d\mathbf{r}_2 \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n_2^{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$$

- Do some more math (distributions again ...) and end-up with

$$\langle \Psi^{\mathcal{B}} | \hat{W}_{ee}^{\mathcal{B}} | \Psi^{\mathcal{B}} \rangle = \frac{1}{2} \iint d\mathbf{r}_{1} d\mathbf{r}_{2} f_{\Psi^{\mathcal{B}}}(\mathbf{r}_{1}, \mathbf{r}_{2}),$$

$$f_{\Psi^{\mathcal{B}}}(\mathbf{r}_{1}, \mathbf{r}_{2}) = \sum_{ijklmn} V_{ij}^{kl} \Gamma_{mn}^{kl} \phi_{i}(\mathbf{r}_{1}) \phi_{j}(\mathbf{r}_{2}) \phi_{m}(\mathbf{r}_{1}) \phi_{n}(\mathbf{r}_{2})$$

• as $\langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}_{ee} | \Psi^{\mathcal{B}} \rangle = \langle \Psi^{\mathcal{B}} | \hat{\mathcal{W}}^{\mathcal{B}}_{ee} | \Psi^{\mathcal{B}} \rangle$ one can write

$$\iint d\mathbf{r}_1 d\mathbf{r}_2 \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n_2^{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2) = \iint d\mathbf{r}_1 d\mathbf{r}_2 \ \mathcal{W}_{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2) n_2^{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$$

$$W_{\Psi^{\mathcal{B}}}(\mathbf{r}_{1},\mathbf{r}_{2}) = \begin{cases} \frac{f_{\Psi^{\mathcal{B}}}(\mathbf{r}_{1},\mathbf{r}_{2})}{n_{2}^{\Psi^{\mathcal{B}}}(\mathbf{r}_{1},\mathbf{r}_{2})}, & \text{if } n_{2}^{\Psi^{\mathcal{B}}}(\mathbf{r}_{1},\mathbf{r}_{2}) \neq 0, \\ \infty, & \text{otherwise,} \end{cases}$$

- $W_{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$ depends on $\Psi^{\mathcal{B}}$
- necessary **finite at** $r_{12} = 0$ when \mathcal{B} is incomplete
- Because of its very construction

$$\lim_{\mathcal{B}\to\infty} W_{\Psi^{\mathcal{B}}}(\mathbf{r}_1,\mathbf{r}_2) = \frac{1}{r_{12}} \ \forall \ \Psi^{\mathcal{B}}$$

< ∃ > < ∃ >

< ∃ > < ∃ >

Idea: taking RS-DFT only for basis set error

In practice

- \bullet Formalism to merge WFT in ${\cal B}$ and DFT \circledast
- \bullet Define properly a non diverging interaction within ${\cal B}$ \circledast
- Fit it with the interaction used in RS-DFT
- Use RS-DFT functionals

Fit $W_{\Psi_{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$ with RS-DFT interaction

 \bullet RS-DFT uses non diverging interaction tuned by μ

$$w_{ee}^{\mathsf{lr}}(\mathbf{r}_1, \mathbf{r}_2; \mu) = \frac{\mathsf{erf}(\mu \, r_{12})}{r_{12}}$$

• Fit $W_{\Psi_{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$ at coalescence, *i.e.* $\mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}$

$$W_{\Psi_{\mathcal{B}}}(\mathbf{r},\mathbf{r}) = w_{ee}^{\mathsf{lr}}(\mathbf{r},\mathbf{r};\mu)$$

• Leads to $\mu(\mathbf{r})$ varying in space

$$\mu_{\boldsymbol{\Psi}_{\mathcal{B}}}(\mathbf{r}) = \frac{\sqrt{\pi}}{2} W_{\boldsymbol{\Psi}_{\mathcal{B}}}(\mathbf{r}, \mathbf{r})$$

$$\lim_{\mathcal{B}\to\infty}\mu_{\Psi_{\mathcal{B}}}(\mathbf{r}) = +\infty \quad \forall \Psi_{\mathcal{B}} \text{ and } \forall \mathbf{r}$$

33

E.Giner

Idea: taking RS-DFT only for basis set error

In practice

- \bullet Formalism to merge WFT in ${\cal B}$ and DFT \circledast
- \bullet Define properly a non diverging interaction within ${\cal B}$ \circledast
- Fit it with the interaction used in RS-DFT ©
- Use RS-DFT functionals

Approximation for the functional

Using RSDFT functionals

• Use the **multi determinantal correlation** functionals $\epsilon_c^{\text{md}}(n; \mu)$ (Toulouse *et al*)

$$E_c^{\rm md} = \int d\mathbf{r} \ \epsilon_c^{\rm md}(n(\mathbf{r});\boldsymbol{\mu})$$

$$\lim_{\mu\to\infty}\epsilon_c^{\rm md}(n;\mu)=0$$

Approximation for the functional

Using RSDFT functionals

• Use the **multi determinantal correlation** functionals $\epsilon_c^{\text{md}}(n; \mu)$ (Toulouse *et al*)

$$E_c^{\rm md} = \int d\mathbf{r} \ \epsilon_c^{\rm md}(n(\mathbf{r});\boldsymbol{\mu})$$

$$\lim_{\mu\to\infty}\epsilon_c^{\rm md}(n;\mu)=0$$

• Use the range separation parameter $\mu_{\Psi_{\mathcal{B}}}(\mathbf{r})$

$$\bar{E}^{\mathcal{B}}[n(\mathbf{r})] \approx \int \mathrm{d}\mathbf{r} \ \epsilon_{c}^{\mathrm{md}}(n(\mathbf{r}); \mu_{\Psi_{\mathcal{B}}}(\mathbf{r}))$$

 ϵ_c^{md}(n; μ): LDA already existed, new PBE version recently
 proposed (JCP, 2019)

$$E_0 \approx E_{\mathsf{FCI}}^{\mathcal{B}} + \int \mathsf{d}\mathbf{r} \ \epsilon_c^{\mathsf{md}}(n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

At the end of the day

- $\mu_{\Psi_{\mathcal{B}}}(\mathbf{r})$ Automatically adapts to \mathcal{B}
- Correct limit at the Complete Basis Set limit
- Use pre-existing DFT methodology

The total energy of the He atom

Systematically improve the results !

39

E.Giner

Generalization to any wave function method

Exact framework works with FCI energies, densities and WF

$$E_0 \approx E_{\mathsf{FCI}}^{\mathcal{B}} + \int \mathrm{d}\mathbf{r} \ \epsilon_c^{\mathsf{md}}(n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

Generalization to any wave function method

Exact framework works with FCI energies, densities and WF

$$E_0 \approx E_{\mathsf{FCI}}^{\mathcal{B}} + \int \mathrm{d}\mathbf{r} \ \epsilon_c^{\mathsf{md}}(n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

Generalization to any wave function method

• Exact framework works with FCI energies, densities and WF

$$E_0 \approx E_{\text{FCI}}^{\mathcal{B}} + \int d\mathbf{r} \ \epsilon_c^{\text{md}}(n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

• What do you need is:

$$E_0 \approx E_{\mathbf{X}}^{\mathcal{B}} + \int \mathrm{d}\mathbf{r} \ \epsilon_c^{\mathrm{md}}(n_{\mathbf{Y}}(\mathbf{r}); \mu_{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}))$$

• Exact framework works with FCI energies, densities and WF

$$E_0 \approx E_{\text{FCI}}^{\mathcal{B}} + \int d\mathbf{r} \ \epsilon_c^{\text{md}}(n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

• What do you need is:

$$E_0 \approx E_{\mathbf{X}}^{\mathcal{B}} + \int \mathrm{d}\mathbf{r} \ \epsilon_c^{\mathrm{md}}(n_{\mathbf{Y}}(\mathbf{r}); \mu_{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}))$$

• CIPSI calculations:

• Exact framework works with FCI energies, densities and WF

$$E_0 \approx E_{\text{FCI}}^{\mathcal{B}} + \int d\mathbf{r} \ \epsilon_c^{\text{md}}(n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

• What do you need is:

$$E_0 \approx E_{\mathbf{X}}^{\mathcal{B}} + \int \mathrm{d}\mathbf{r} \ \epsilon_c^{\mathrm{md}}(n_{\mathbf{Y}}(\mathbf{r}); \mu_{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}))$$

- CIPSI calculations:
 - $E_{\mathbf{X}}^{\mathcal{B}}$: **CIPSI** energy $\approx E_{\mathbf{FCI}}^{\mathcal{B}}$

• Exact framework works with FCI energies, densities and WF

$$E_0 \approx E_{\text{FCI}}^{\mathcal{B}} + \int d\mathbf{r} \ \epsilon_c^{\text{md}}(n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

What do you need is:

$$E_0 \approx E_{\mathbf{X}}^{\mathcal{B}} + \int \mathrm{d}\mathbf{r} \ \epsilon_c^{\mathrm{md}}(n_{\mathbf{Y}}(\mathbf{r}); \mu_{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}))$$

- CIPSI calculations:
 - $E_{\mathbf{X}}^{\mathcal{B}}$: CIPSI energy $\approx E_{\mathsf{FCI}}^{\mathcal{B}}$
 - $n_{Y}(\mathbf{r})$: CIPSI density $\approx n_{\Psi_{FCI}^{\mathcal{B}}}(\mathbf{r})$

• Exact framework works with FCI energies, densities and WF

$$E_0 \approx E_{\text{FCI}}^{\mathcal{B}} + \int d\mathbf{r} \ \epsilon_c^{\text{md}}(n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

What do you need is:

$$E_0 \approx E_{\mathbf{X}}^{\mathcal{B}} + \int \mathrm{d}\mathbf{r} \ \epsilon_c^{\mathrm{md}}(n_{\mathbf{Y}}(\mathbf{r}); \mu_{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}))$$

- CIPSI calculations:
 - $E_{\mathbf{X}}^{\mathcal{B}}$: CIPSI energy $\approx E_{\mathsf{FCI}}^{\mathcal{B}}$
 - $n_{\mathbf{Y}}(\mathbf{r})$: CIPSI density $\approx n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r})$
 - Ψ^B: **HF**

• Exact framework works with FCI energies, densities and WF

$$E_0 \approx E_{\text{FCI}}^{\mathcal{B}} + \int d\mathbf{r} \ \epsilon_c^{\text{md}}(n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

What do you need is:

$$E_0 \approx E_{\mathbf{X}}^{\mathcal{B}} + \int \mathrm{d}\mathbf{r} \ \epsilon_c^{\mathrm{md}}(n_{\mathbf{Y}}(\mathbf{r}); \mu_{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}))$$

- CIPSI calculations:
 - $E_{\mathbf{X}}^{\mathcal{B}}$: CIPSI energy $\approx E_{\mathsf{FCI}}^{\mathcal{B}}$
 - $n_{\rm Y}({\bf r})$: CIPSI density $\approx n_{\Psi_{\rm FCI}^{\cal B}}({\bf r})$
 - Ψ^B: HF
- CCSD(T) calculations:

• Exact framework works with FCI energies, densities and WF

$$E_0 \approx E_{\text{FCI}}^{\mathcal{B}} + \int d\mathbf{r} \ \epsilon_c^{\text{md}}(n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

• What do you need is:

$$E_0 \approx E_{\mathbf{X}}^{\mathcal{B}} + \int \mathrm{d}\mathbf{r} \ \epsilon_c^{\mathrm{md}}(n_{\mathbf{Y}}(\mathbf{r}); \mu_{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}))$$

- CIPSI calculations:
 - $E_{\mathbf{X}}^{\mathcal{B}}$: CIPSI energy $\approx E_{\mathsf{FCI}}^{\mathcal{B}}$
 - $n_{\rm Y}({\bf r})$: CIPSI density $\approx n_{\Psi_{\rm FCI}^{\cal B}}({\bf r})$
 - Ψ^B: **HF**
- CCSD(T) calculations:
 - $E_{\mathbf{X}}^{\mathcal{B}}$: **CCSD(T)** energy $\approx E_{\mathsf{FCI}}^{\mathcal{B}}$

• Exact framework works with FCI energies, densities and WF

$$E_0 \approx E_{\text{FCI}}^{\mathcal{B}} + \int d\mathbf{r} \ \epsilon_c^{\text{md}}(n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

• What do you need is:

$$E_0 \approx E_{\mathbf{X}}^{\mathcal{B}} + \int \mathrm{d}\mathbf{r} \ \epsilon_c^{\mathrm{md}}(n_{\mathbf{Y}}(\mathbf{r}); \mu_{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}))$$

- CIPSI calculations:
 - $E_{\mathbf{X}}^{\mathcal{B}}$: CIPSI energy $\approx E_{\mathsf{FCI}}^{\mathcal{B}}$
 - $n_{\rm Y}({\bf r})$: CIPSI density $\approx n_{\Psi_{\rm FCI}^{\cal B}}({\bf r})$
 - Ψ^B: **HF**
- CCSD(T) calculations:
 - $E_{\mathbf{X}}^{\mathcal{B}}$: **CCSD(T)** energy $\approx E_{\mathsf{FCI}}^{\mathcal{B}}$
 - $n_{\mathbf{Y}}(\mathbf{r})$: **HF** density $\approx n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}(\mathbf{r})$

• Exact framework works with FCI energies, densities and WF

$$E_0 \approx E_{\text{FCI}}^{\mathcal{B}} + \int d\mathbf{r} \ \epsilon_c^{\text{md}}(n_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}); \mu_{\Psi_{\text{FCI}}^{\mathcal{B}}}(\mathbf{r}))$$

• What do you need is:

$$E_0 \approx E_{\mathbf{X}}^{\mathcal{B}} + \int \mathrm{d}\mathbf{r} \ \epsilon_c^{\mathrm{md}}(n_{\mathbf{Y}}(\mathbf{r}); \mu_{\boldsymbol{\Psi}^{\mathcal{B}}}(\mathbf{r}))$$

- CIPSI calculations:
 - $E_{\mathbf{X}}^{\mathcal{B}}$: CIPSI energy $\approx E_{\mathsf{FCI}}^{\mathcal{B}}$
 - $n_{\rm Y}({\bf r})$: CIPSI density $\approx n_{\Psi_{\rm FCI}^{\cal B}}({\bf r})$
 - Ψ^B: **HF**
- CCSD(T) calculations:
 - $E_{\mathbf{X}}^{\mathcal{B}}$: **CCSD(T)** energy $\approx E_{\mathsf{FCI}}^{\mathcal{B}}$
 - $n_{\rm Y}({\bf r})$: **HF** density $\approx n_{\Psi_{\rm FCI}^{\mathcal{B}}}({\bf r})$
 - Ψ^B: HF

E.Giner

E.Giner

E.Giner

E.Giner

The G2 set with CCSD(T) and CCSD(T)+PBE

The G2 set with CCSD(T) and CCSD(T)+PBE

E.Giner

Statistical analysis of the G2 set with CCSD(T)+PBE

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD(T)/cc-pVTZ	6.06	6.84	14.25	2
CCSD(T)/cc-pVQZ	2.50	2.86	6.75	9
CCSD(T)/cc-pV5Z	1.28	1.46	3.46	21

* 注入 * 注入 -

Statistical analysis of the G2 set with CCSD(T)+PBE

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD(T)/cc-pVTZ	6.06	6.84	14.25	2
CCSD(T)/cc-pVQZ	2.50	2.86	6.75	9
CCSD(T)/cc-pV5Z	1.28	1.46	3.46	21
CCSD(T)+PBE/cc-pVDZ CCSD(T)+PBE/cc-pVTZ CCSD(T)+PBE/cc-pVQZ	1.96 <mark>0.85</mark> 0.31	2.59 1.11 0.42	7.33 2.64 1.16	19 <mark>36</mark> 53

43

OF SERVICE COTT

(《문》 《문》 / 문

mation interaction and its coupin

Statistical analysis of the G2 set with CCSD(T)+PBE

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD(T)/cc-pVTZ	6.06	6.84	14.25	2
CCSD(T)/cc-pVQZ	2.50	2.86	6.75	9
CCSD(T)/cc-pV5Z	1.28	1.46	3.46	21
CCSD(T)+PBE/cc-pVDZ CCSD(T)+PBE/cc-pVTZ CCSD(T)+PBE/cc-pVQZ	1.96 0.85 0.31	2.59 1.11 0.42	7.33 2.64 1.16	19 <mark>36</mark> 53

To compute the DFT part we need only

- The HF one body density
- The HF two body density for α/β pairs
- The MP2 integrals

very cheap compared to CCSD(T)

Application to excited states: doubly excited states

Conclusion and work in progress

What we obtained

- Proper theory to link basis set error and DFT
 - J. Chem. Phys. 149, 194301 (2018)
 - No cusp ⇔ non divergent interaction !
 - Automatic, simple and cheap
 - \bullet Correct limit when ${\cal B}$ is complete
- Application to weak correlation, CCSD(T) and CIPSI
 J. Phys. Chem. Let., 10, 2931-2937 (2019)
- Application to excited states, J. Chem. Phys. 151, (2019)

What we're doing now

- Development of new functionals for strong correlation
- Self-consistent formalism, properties, GW
- $\bullet\,$ Formal aspects, new formalisms to connect ${\cal B}$ and DFT

- Julien Toulouse (introduction to DFT, enthousiasm ...)
- Roland Assaraf (distributions ...)
- Barthelemy Pradines (self consistent version, GW ...)
- PF Loos (excited states, GW ...)
- Andreas Savin (stimulating discussions ...)

46

(B) → (B) →

Atomization energies with CIPSI/CCSD(T)

E.Giner

• Definition of $\overline{E}^{\mathcal{B}}[n(\mathbf{r})]$

$$\begin{split} \bar{\mathcal{E}}^{\mathcal{B}}[n] &= \langle \Psi[n] | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee} | \Psi[n] \rangle - \langle \Psi^{\mathcal{B}}[n] | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee} | \Psi^{\mathcal{B}}[n] \rangle \\ \Psi[n] &= \operatorname{argmin} \langle \Psi | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee} | \Psi \rangle, \quad \Psi^{\mathcal{B}}[n] = \operatorname{argmin} \langle \Psi | \hat{\mathcal{T}}^{\mathcal{B}} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}} | \Psi \rangle \end{split}$$

<注入 <注入 < 注入 :

• Definition of $\overline{E}^{\mathcal{B}}[n(\mathbf{r})]$

$$\begin{split} \bar{E}^{\mathcal{B}}[n] &= \langle \Psi[n] | \hat{T} + \hat{W}_{ee} | \Psi[n] \rangle - \langle \Psi^{\mathcal{B}}[n] | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}}[n] \rangle \\ \Psi[n] &= \operatorname{argmin} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle, \quad \Psi^{\mathcal{B}}[n] = \operatorname{argmin} \langle \Psi | \hat{T}^{\mathcal{B}} + \hat{W}_{ee}^{\mathcal{B}} | \Psi \rangle \end{split}$$

• Definition of **multi-determinant** correlation functional (ECMD) of Toulouse *et. al.*

$$\begin{split} \bar{E}^{\mu}[n] &= \langle \Psi[n] | \hat{T} + \hat{W}_{ee} | \Psi[n] \rangle - \langle \Psi^{\mu}[n] | \hat{T} + \hat{W}_{ee} | \Psi^{\mu}[n] \rangle \\ \Psi[n] &= \operatorname{argmin} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle, \quad \Psi^{\mu}[n] = \operatorname{argmin} \langle \Psi | \hat{T} + \hat{W}_{ee}^{\mu} | \Psi \rangle \end{split}$$

• Definition of $\overline{E}^{\mathcal{B}}[n(\mathbf{r})]$

$$\begin{split} \bar{E}^{\mathcal{B}}[n] &= \langle \Psi[n] | \hat{T} + \hat{W}_{ee} | \Psi[n] \rangle - \langle \Psi^{\mathcal{B}}[n] | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}}[n] \rangle \\ \Psi[n] &= \operatorname{argmin} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle, \quad \Psi^{\mathcal{B}}[n] = \operatorname{argmin} \langle \Psi | \hat{T}^{\mathcal{B}} + \hat{W}_{ee}^{\mathcal{B}} | \Psi \rangle \end{split}$$

• Definition of **multi-determinant** correlation functional (ECMD) of Toulouse *et. al.*

$$\begin{split} \bar{E}^{\mu}[n] &= \langle \Psi[n] | \hat{T} + \hat{W}_{ee} | \Psi[n] \rangle - \langle \Psi^{\mu}[n] | \hat{T} + \hat{W}_{ee} | \Psi^{\mu}[n] \rangle \\ \Psi[n] &= \operatorname{argmin} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle, \quad \Psi^{\mu}[n] = \operatorname{argmin} \langle \Psi | \hat{T} + \hat{W}_{ee}^{\mu} | \Psi \rangle \end{split}$$

48

• Make a link between $\Psi^{\mathcal{B}}$ and Ψ^{μ}

• Definition of $\overline{E}^{\mathcal{B}}[n(\mathbf{r})]$

$$\begin{split} \bar{E}^{\mathcal{B}}[n] &= \langle \Psi[n] | \hat{T} + \hat{W}_{ee} | \Psi[n] \rangle - \langle \Psi^{\mathcal{B}}[n] | \hat{T} + \hat{W}_{ee} | \Psi^{\mathcal{B}}[n] \rangle \\ \Psi[n] &= \operatorname{argmin} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle, \quad \Psi^{\mathcal{B}}[n] = \operatorname{argmin} \langle \Psi | \hat{T}^{\mathcal{B}} + \hat{W}_{ee}^{\mathcal{B}} | \Psi \rangle \end{split}$$

• Definition of **multi-determinant** correlation functional (ECMD) of Toulouse *et. al.*

$$\begin{split} \bar{E}^{\mu}[n] &= \langle \Psi[n] | \hat{T} + \hat{W}_{ee} | \Psi[n] \rangle - \langle \Psi^{\mu}[n] | \hat{T} + \hat{W}_{ee} | \Psi^{\mu}[n] \rangle \\ \Psi[n] &= \operatorname{argmin} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle, \quad \Psi^{\mu}[n] = \operatorname{argmin} \langle \Psi | \hat{T} + \hat{W}_{ee}^{\mu} | \Psi \rangle \end{split}$$

- Make a link between $\Psi^{\mathcal{B}}$ and Ψ^{μ}
- The way to make a link: connect $\hat{W}^{\mathcal{B}}_{\mathrm{ee}}$ and $\hat{W}^{\mu}_{\mathrm{ee}}$

PES of N_2 in AVXZ (X=D,T)

E.Giner

49

< □ ▶ < 급 ▶ < 토 ▶ < 토 ▶ Ξ = · · ○ Q(
 view of selected configuration interaction and its coupling

PES of H_{10} in VXZ (X=D,T)

E.Giner

50

◆□ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\hat{W}_{ee}^{\mathcal{B}} = \frac{1}{2} \sum_{ijkl \in \mathcal{B}} V_{ij}^{kl} \hat{a}_{k}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{j} \hat{a}_{i}, \quad \hat{a}_{k}^{\dagger} = \int d\mathbf{r}_{1} \phi_{k}(\mathbf{r}_{1}) \hat{\Psi}^{\dagger}(\mathbf{r}_{1})$$

$$\hat{W}_{ee}^{\mathcal{B}} = \int d\mathbf{r}_{1} d\mathbf{r}_{2} d\mathbf{r}_{1'} d\mathbf{r}_{2'} w_{ee}^{\mathcal{B}}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1'}, \mathbf{r}_{2'}) \hat{\Psi}^{\dagger}(\mathbf{r}_{1}) \hat{\Psi}^{\dagger}(\mathbf{r}_{2}) \hat{\Psi}(\mathbf{r}_{2'}) \hat{\Psi}(\mathbf{r}_{1'})$$

$$w_{ee}^{\mathcal{B}}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1'}, \mathbf{r}_{2'}) = \sum_{ijkl \in \mathcal{B}} V_{ij}^{kl} \phi_{k}(\mathbf{r}_{1}) \phi_{l}(\mathbf{r}_{2}) \phi_{j}(\mathbf{r}_{2'}) \phi_{i}(\mathbf{r}_{1'})$$

Here $w_{ee}^{\mathcal{B}}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_{1'}, \mathbf{r}_{2'})$ MUST NOT be considered as function as

$$\lim_{\mathcal{B}\to\infty} w_{ee}^{\mathcal{B}}(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{1'},\mathbf{r}_{2'}) = \delta(\mathbf{r}_{1}-\mathbf{r}_{1'})\delta(\mathbf{r}_{2}-\mathbf{r}_{2'})\frac{1}{r_{12}}$$

The diagonal elements $w_{ee}^{\mathcal{B}}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_1, \mathbf{r}_2)$ do not make sense ...

 $w_{ee}^{\mathcal{B}}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_{1'}, \mathbf{r}_{2'})$ MUST be considered as a **distribution** Therefore, one MUST integrate $w_{ee}^{\mathcal{B}}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_{1'}, \mathbf{r}_{2'})$ over functions

$$\langle \Psi^{\mathcal{B}} | \hat{W}_{ee}^{\mathcal{B}} | \Psi^{\mathcal{B}} \rangle = \int d\mathbf{r}_{1} d\mathbf{r}_{2} d\mathbf{r}_{1'} d\mathbf{r}_{2'} \ w_{ee}^{\mathcal{B}}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1'}, \mathbf{r}_{2'})$$

$$\langle \Psi^{\mathcal{B}} | \hat{\Psi}^{\dagger}(\mathbf{r}_{1}) \hat{\Psi}^{\dagger}(\mathbf{r}_{2}) \hat{\Psi}(\mathbf{r}_{2'}) \hat{\Psi}(\mathbf{r}_{1'}) | \Psi^{\mathcal{B}} \rangle$$

$$= \int d\mathbf{r}_{1} d\mathbf{r}_{2} d\mathbf{r}_{1'} d\mathbf{r}_{2'} \ w_{ee}^{\mathcal{B}}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1'} \mathbf{r}_{2'}) n_{2}^{\Psi^{\mathcal{B}}}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1'} \mathbf{r}_{2'})$$

Apply the distribution $w_{ee}^{\mathcal{B}}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_{1'}, \mathbf{r}_{2'})$, integrate over $\mathbf{r}_{1'}$ and $\mathbf{r}_{2'}$

$$\langle \Psi^{\mathcal{B}} | \hat{W}_{ee}^{\mathcal{B}} | \Psi^{\mathcal{B}} \rangle = \int d\mathbf{r}_1 d\mathbf{r}_2 \left(\int d\mathbf{r}_{1'} d\mathbf{r}_{2'} w_{ee}^{\mathcal{B}}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_{1'} \mathbf{r}_{2'}) n_2^{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_{1'} \mathbf{r}_{2'}) \right)$$
$$= \int d\mathbf{r}_1 d\mathbf{r}_2 \quad f_{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$$

Why HF is such a good approximation for μ ?

$$W_{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2) = \frac{f_{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)}{n_2^{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)}$$

- Everything is within $f_{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$
- The explicit form for $f_{\Psi^{\mathcal{B}}}(\mathbf{r}_1, \mathbf{r}_2)$ for $\Psi^{\mathcal{B}} = \mathsf{HF}$ for α/β electrons

$$f_{\mathsf{HF}}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{k \in \alpha} \sum_{l \in \beta} \sum_{ij \in \mathcal{B}} V_{ij}^{kl} \phi_i(\mathbf{r}_1) \phi_j(\mathbf{r}_2) \phi_k(\mathbf{r}_1) \phi_l(\mathbf{r}_2)$$
(4)

- $\sum_{ij\in\mathcal{B}} \Leftrightarrow$ one sees "all the basis \mathcal{B} "
- Integrals involved V_{ii}^{ab} like in usual MP2 calculations
- Dominant effect to quantify the quality of the basis set

Finite basis-set approximation for the exact density

In actual calculation: finite one-electron basis set B
 ⇒ search over a subet of densities n^B(r)

$$E_0^{\mathcal{B}} = \min_{n^{\mathcal{B}}(\mathbf{r})} \left\{ F[n^{\mathcal{B}}(\mathbf{r})] + (v_{ne}|n^{\mathcal{B}}) \right\}$$

- $n_0^{\mathcal{B}}(\mathbf{r})$ is the density giving the lowest energy
- $n_0(\mathbf{r})$ might not be representable within \mathcal{B} $\Rightarrow E_0^{\mathcal{B}} \ge E_0$
- In practice fast convergence of the density with B

$$n_0(\mathbf{r}) \approx n_0^{\mathcal{B}}(\mathbf{r})$$
$$E_0 \approx E_0^{\mathcal{B}}$$

What about DFT and the basis set ?

- How does **DFT** works ?
 - expresses the two-body density with one-body density

$$n_2(\mathbf{r}_1, \mathbf{r}_2) = \underbrace{n(\mathbf{r}_1)n(\mathbf{r}_2)}_{\text{System dependant}} + \underbrace{n_{xc}(\mathbf{r}_1, \mathbf{r}_2, n, \nabla n, ...)}_{\text{quite universal}}$$

물 제 문 제 문 제 .

- Example: LDA $n_{xc}(n)$ is taken from the electron gas
- *n*_{xc}(**r**₁, **r**₂) when *r*₁₂ ≈ 0 ⇔ electron cusp ⇔ universal !
 ⇒ short-range correlation effects well reproduced !
- *n* converges rapidly with *B*
- Long-range correlation effects are less universal ...