Overview of selected configuration interaction and its coupling with DFF

E.Giner

Laboratoire de chimie théorique, Paris

WFT in a nutshell ..

- Basis set $\mathcal{B} \Leftrightarrow$ Hydrogen-like functions centered on atoms
- Use Slater determinants for the N_{e}-particle basis set:

$$
\Psi^{\mathcal{B}}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{e}}\right)=\sum_{\mathrm{I}} c_{\mathrm{I}} \psi_{\mathrm{I}}^{\mathcal{B}}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{e}}\right)
$$

- Try to solve

$$
\hat{H} \Psi^{\mathcal{B}}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{e}}\right)=E \Psi^{\mathcal{B}}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{e}}\right)
$$

- A clear target: the $\mathbf{F C I}$

$$
E_{\mathrm{FCI}}^{\mathcal{B}}=\min _{\psi^{\mathcal{B}}}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}+\hat{v}_{n e}\left|\Psi^{\mathcal{B}}\right\rangle
$$

$\Psi^{\mathcal{B}}$ a is a fully flexible wave function within \mathcal{B}

- Approximated WFT methods :
- Who are $\psi_{\mathrm{I}}^{\mathcal{B}}$?
- How to find c_{I} ?
- How to determine E ?

3 questions leads to MANY WFT methods ...

(Some) Acronyms for Wave Function Theory ...

- HF, MP2, CEPA-n, $\operatorname{CISD}(S C)^{2}, \operatorname{CCSD}(T), B C C D(T)$, EOM-CCSD(T), PNO-CCSD(T), DLPNO-CCSD(T),
- CASCI, CASSCF, MCSCF, MRMP2, XMCQDPT, CASPT2, MS-CASPT2, NEVPT2, SC-NEVPT2, PC-NEVPT2, QD-NEVPT2, JMMRPT2, ...
- CIPSI, HBCI, MPS, DMRG, FCIQMC, iFCIQMC, ACI, SORCI, DDCI, FOBOCI, ...
- SS-MRCC, SU-MRCC, VU-MRCC, JM-MRCC, Mk-MRCCSDT, ic-MRCC, ...

Why so many acronyms ?

- Do theoretical chemists love to produce more ? (ego issue ?)
- Chemistry is very heterogeneous:
- Different properties to compute ($E, \vec{\nabla} E$, etc \ldots)
- Different size of systems $\left(10^{1} \rightarrow 10^{3}\right.$ electrons)
- Different states (ground/excited state, spin symmetry ...)
- Different correlation (weak and/or strong)
- Chemical accuracy ($\approx 1 \mathrm{mH}, 0.02 \mathrm{eV}, 300 \mathrm{~K}$)
- Within \mathcal{B} : what is the answer of selected Cl to
- Who are $\psi_{\mathrm{I}}^{\mathcal{B}}$?
- How to find c_{I} ?
- How to determine E ?
- What computational scaling with $N_{\mathcal{B}}$?
- What outside \mathcal{B} ?
\Rightarrow chemical accuracy and link with DFT

Some history of selected Cl in quantum chemistry

Selected CI : use a selection based on \hat{H} Natural idea (re)discovered and (slightly) improved MANY times

- Bender, Davidson, 1969
- Bender, Davidson, 1969
- Malrieu et al, 1973 (CIPSI)
- Buenker et al, 1978
- Malrieu et al, 1983 (CIPSI)
- Cimiraglia, 1985 (CIPSI)
- Angeli et al, 1997 (CIPSI)
- Hanrath et al, 2001
- Sherill et al, 2005
- Bunge et al, 2006
- Ruedenberg et al, 2009 (CEEIS)
- Toulouse group, 2013-2020 (CIPSI for QMC and stochastic PT2)
- Umrigar et al, 2016-2020 (HCl and stochastic PT2)
- Liu et al, 2016 (iCI)
- Evangelista et al, 2017 (ACI: CIPSI with another name ... ?)
- Hasegawa et al, 2017

The concept of selection in WFT

- Selection a priori:
- You can predict exactly who are the $\psi_{\mathrm{I}}^{\mathcal{B}}$
- Ex: all singles and doubles on top of HF, CASCI space, etc ...
- Ex: CISD, CCSD, CCSD(T), MP2, CASSCF, NEVPT2, ...
- Selection without a priori
- You cannot predict who are the $\psi_{\mathrm{I}}^{\mathcal{B}}$
- Ex: selection by perturbation, random walk in $\psi_{\mathrm{I}}^{\mathcal{B}}$ space, etc ...
- Ex: selected Cl (CIPSI, HCI, blablabla), FCI-QMC, etc ...

Selection with "A priori"

- Not always adapted : user dependency ${ }^{\text {() }}$
- Strong / weak correlation and their coupling ? (CCSD(T) enough/adapted ?)
- Choice of the active space ? (Am I missing physics ?)
- Targets essentially a polynomial subspace of FCl
- Clear target: mathematical optimization ${ }^{-)}$
- Compute only $\left\langle\psi_{\mathrm{I}}\right| \hat{H}\left|\psi_{\mathrm{J}}\right\rangle \neq 0$ (exploit strong sparsity of \hat{H})
- Complex parametrization ($e^{\hat{T}}|\mathrm{HF}\rangle, \sum_{\mathrm{I}} c_{\mathrm{I}} e^{\hat{T}_{\mathrm{I}}}\left|\psi_{\mathrm{I}}\right\rangle$, etc \ldots)
- Good properties: size extensivity/spin multiplet degeneracy Ex: CISD died, CCSD took over because of size extensivity

Selection without "A priori"

- When affordable: essentially the FCI solution ${ }^{\text {© }}$
- Very trusty and black box
- Handle strong / weak correlation and their coupling
- Targets the whole FCI space ${ }^{()}$
- Exponentially large target
- But "not so many" $\left|\psi_{\mathrm{I}}\right\rangle$ matter at the end ...
- No A priori knowledge: Linear parametrization
- i.e. CI expansion, not CC expansion
- Simple equations (CI + MRPT2 for instance)
- Much less simple to make it efficient
- If not converged:
- Size consistency issue
- Bad error cancellations for energy differences

The CIPSI-like algorithm (1)

Starting with a guess WF: $\left|\Psi^{(0)}\right\rangle=\sum_{\mathrm{I}=1}^{N^{(0)}} c_{\mathrm{I}}\left|\psi_{\mathrm{I}}\right\rangle$ do $\mathbf{k}=\mathbf{0}, N_{\text {iterations }}$
(1) Look at all connected determinants $|\mu\rangle:\langle\mu| \hat{H}\left|\Psi^{(k)}\right\rangle \neq 0$ \Rightarrow single or double excitation on top of any $\left|\psi_{I}\right\rangle$
(2) Compute the perturbative energy contribution ϵ_{μ}
(3) Sort all the $|\mu\rangle$ by energy contribution ϵ_{μ}
(9) Select the " n " most important ones
(6) Diagonalize \hat{H} in the new set of determinants :

$$
N^{(k+1)}=N^{(k)}+n
$$

(6) You have a new reference WF:

$$
\left|\Psi^{(k+1)}\right\rangle=\sum_{\mathrm{I}=1}^{N^{(k+1)}} c_{\mathrm{I}}\left|\psi_{\mathrm{I}}\right\rangle
$$

end do

The perturbative and variational energy

At a given iteration, one has a given $|\Psi\rangle$:

- Variational energy

$$
E_{V_{a r}}=\frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

- Second order Perturbative energy

$$
\begin{aligned}
& E_{P T 2}=\sum_{\mu} \epsilon_{\mu} \\
& \epsilon_{\mu}=\frac{(\langle\mu| \hat{H}|\Psi\rangle)^{2}}{E_{V a r}-\langle\mu| \hat{H}|\mu\rangle}
\end{aligned}
$$

- CIPSI energy $\equiv E_{V a r}+E_{P T 2}$
\Rightarrow approximation of the $\mathbf{F C I}$ energy

Example: a cyanine ground and excited state

Frozen core FCl :

- 18 e in 111 MOs
- FCI space: $\approx 10^{24} \psi_{\mathrm{I}}$
- ΔE stabilized within $0.02 \mathrm{eV} \approx 2 \times 10^{6} \psi_{\mathrm{I}}$

What can you obtain with CIPSI-like algorithms

- FCI quality whatever the level of correlation for gd/excited
- Modest basis (DZ) and molecules (4/5 non-hydrogen atoms) (See Loos et al 2018, 2019 with $\approx 400 \mathrm{FCl}$ transition energies)
- Validation of methods in complex situations
(Loos et al 2019 for doubly exc states and Giner et al 2019 for Cu^{2+} systems)
- QMC trial wave functions (a lot of litterature)
- Large CASSCF calculations (Umrigar et al)
- Caffarel / Chicago go in the direction of solid state

CIPSI available in QP2: stand-alone open source program https://quantum-package.readthedocs.io/en/master/

- A lot of WFT tools
- All ingredients for DFT
- Developer friendly
- Check the Youtube videos:)

Example: the $\operatorname{CCSD}(\mathrm{T})$ atomization energies for the G 2 set

Method	MAD	RMSD	MAX	CA
CCSD $(T) /$ cc-pVDZ	14.29	16.21	36.95	2
CCSD $(T) /$ cc-pVTZ	6.06	6.84	14.25	2
CCSD $(T) /$ cc-pVQZ	2.50	2.86	6.75	9
CCSD $(T) /$ cc-pV5Z	1.28	1.46	3.46	21

What are we missing ?

Example: the $\operatorname{CCSD}(\mathrm{T})$ atomization energies for the G 2 set

Method	MAD	RMSD	MAX	CA
CCSD $(T) /$ cc-pVDZ	14.29	16.21	36.95	2
CCSD $(T) /$ cc-pVTZ	6.06	6.84	14.25	2
CCSD $(T) /$ cc-pVQZ	2.50	2.86	6.75	9
CCSD $(T) /$ cc-pV5Z	1.28	1.46	3.46	21

What are we missing ?
Mainly short-range correlation effects of course

Example: the $\operatorname{CCSD}(\mathrm{T})$ atomization energies for the G 2 set

$\rightarrow \operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVDZ}: \mathrm{MAD}=14.29 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \rightarrow \operatorname{CCSD}(\mathrm{~T}) / \mathrm{cc}-\mathrm{pVTZ}: \mathrm{MAD}=6.06{\mathrm{kcal} \cdot \mathrm{mol}^{-1} \rightarrow \operatorname{CCSD}(\mathrm{~T}) / \mathrm{cc}-\mathrm{pVQZ}: \mathrm{MAD}=2.50 \mathrm{kcal} \cdot \mathrm{mol}}^{-1}$

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD $(T) /$ cc-pVTZ	6.06	6.84	14.25	2
CCSD $(T) /$ cc-pVQZ	2.50	2.86	6.75	9
CCSD $(T) /$ cc-pV5Z	1.28	1.46	3.46	21

What are we missing ?
Mainly short-range correlation effects of course

$$
\begin{array}{lllll}
\mathrm{CCSD}(\mathrm{~T})+\mathrm{PBE} / \mathrm{cc-pVTZ} & 0.85 & 1.11 & 2.64 & 36
\end{array}
$$

Example: the $\operatorname{CCSD}(\mathrm{T})$ atomization energies for the G 2 set

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD $(\mathrm{T}) /$ cc-pVTZ	6.06	6.84	14.25	2
CCSD $(\mathrm{T}) /$ cc-pVQZ	2.50	2.86	6.75	9
CCSD $(\mathrm{T}) /$ cc-pV5Z	1.28	1.46	3.46	21

What are we missing ?
Mainly short-range correlation effects of course

$$
\text { CCSD(T)+PBE/cc-pVTZ } 0.85 \text { 1.11 } 2.64
$$

Collaborators on selected Cl and WFT/DFT

- selected Cl
- Anthony Scemama (LCPQ) - Anouar Benali (Chicago)
- Michel Caffarel (LCPQ)
- P. F. Loos (LCPQ)
- Yan Garniron (LCPQ)
- Kevin Gasperich (Chicago)
- Anthony Ferté (LCPMR)
- coupling WFT/DFT
- Julien Toulouse (LCT) - Anthony Ferté (LCPMR)
- P. F. Loos (LCPQ)
- Rolland Assaraf (LCT)
- Barthélémy Pradines (LCT) - Anthony Scemama (LCPQ)

Exact conditions in WFT: the electron-electron cusp

- Exact wave function $\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$ satisfies $\forall\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$

$$
\begin{gathered}
H \Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=E \Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \\
\left(-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_{i}}+\sum_{i=1}^{N} v_{n e}\left(\mathbf{r}_{i}\right)+\sum_{i>j} \frac{1}{r_{i j}}\right) \Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=E \Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)
\end{gathered}
$$

- Divergence of coulomb interaction near $r_{12} \approx 0$

$$
\lim _{r_{12} \rightarrow 0} \frac{1}{r_{12}}=+\infty
$$

- $H \Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$ must remain finite $\forall\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$:
\Rightarrow The kinetic energy must compensate!
\Rightarrow Discontinuity in first-derivative !
- Cusp in the electronic wave function

Exact conditions in WFT: the electron-electron cusp

- Expansion of the exact ψ around $r_{12} \approx 0$:

$$
\Psi\left(\mathbf{r}_{1}, r_{12}\right)=\underbrace{\Psi\left(\mathbf{r}_{1}, 0\right)}_{\text {System dependant }}(1+\underbrace{\frac{1}{2} \mathbf{r}_{12}}_{\text {Universal ! }}+\ldots)
$$

- Valid for any fermionic systems
- For instance the Uniform Electron Gaz
- Expansion of truncated $\Psi^{\mathcal{B}}$ around $r_{12} \approx 0$

$$
\Psi^{\mathcal{B}}\left(\mathbf{r}_{1}, r_{12}\right)=\Psi^{\mathcal{B}}\left(\mathbf{r}_{1}, 0\right)(1+\underbrace{0 \times \mathbf{r}_{12}}_{\text {no cusp ! }}+\ldots)
$$

- One solution: F_{12} methods

$$
\Psi_{\mathrm{F}_{12}}^{\mathcal{B}}\left(\mathbf{r}_{1}, r_{12}\right)=f\left(r_{12}\right) \Psi^{\mathcal{B}}\left(\mathbf{r}_{1}, r_{12}\right)
$$

An aternative point of view on the cusp

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp

An aternative point of view on the cusp

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp

An aternative point of view on the cusp

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction

An aternative point of view on the cusp

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction

An aternative point of view on the cusp

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction
- $\Psi^{\mathcal{B}}$ could come from a non-divergent interaction

An aternative point of view on the cusp

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction
- $\Psi^{\mathcal{B}}$ could come from a non-divergent interaction

An aternative point of view on the cusp

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction
- $\Psi^{\mathcal{B}}$ could come from a non-divergent interaction
- Truncation of $\mathcal{B} \Leftrightarrow \hat{W}_{\text {ee }}^{\mathcal{B}}$ does not diverge !!

An aternative point of view on the cusp

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction
- $\Psi^{\mathcal{B}}$ could come from a non-divergent interaction
- Truncation of $\mathcal{B} \Leftrightarrow \hat{W}_{\text {ee }}^{\mathcal{B}}$ does not diverge !!

An aternative point of view on the cusp

- Finite basis-set $\Leftrightarrow \Psi^{\mathcal{B}}$ no cusp
- The cusp comes from a divergence in the interaction
- $\Psi^{\mathcal{B}}$ could come from a non-divergent interaction
- Truncation of $\mathcal{B} \Leftrightarrow \hat{W}_{e e}^{\mathcal{B}}$ does not diverge !!
- We know a DFT framework which looks like that ! :) \Rightarrow Range Separated DFT (RS-DFT)

RS-DFT in a nutshell ...

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)

RS-DFT in a nutshell ...

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$
w_{e e}^{\mathrm{Ir}}\left(r_{12} ; \mu\right)=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}}
$$

μ : tunable parameter

RS-DFT in a nutshell ...

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$
w_{e e}^{\mathrm{Ir}}\left(r_{12} ; \mu\right)=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}}
$$

μ : tunable parameter

- No divergence \Leftrightarrow no cusp in WFT!

RS-DFT in a nutshell ...

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$
w_{e e}^{\mathrm{Ir}}\left(r_{12} ; \mu\right)=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}}
$$

μ : tunable parameter

- No divergence \Leftrightarrow no cusp in WFT!
- DFT: small r_{12} effects !

RS-DFT in a nutshell ...

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$
w_{e e}^{\mathrm{Ir}}\left(r_{12} ; \mu\right)=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}}
$$

μ : tunable parameter

- No divergence \Leftrightarrow no cusp in WFT!
- DFT: small r_{12} effects !
- μ : controls the mixing between WFT/DFT

RS-DFT in a nutshell ...

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$
w_{e e}^{\mathrm{Ir}}\left(r_{12} ; \mu\right)=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}}
$$

μ : tunable parameter

- No divergence \Leftrightarrow no cusp in WFT!
- DFT: small r_{12} effects !
- μ : controls the mixing between WFT/DFT
- Pb:

RS-DFT in a nutshell ...

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$
w_{e e}^{\mathrm{Ir}}\left(r_{12} ; \mu\right)=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}}
$$

μ : tunable parameter

- No divergence \Leftrightarrow no cusp in WFT!
- DFT: small r_{12} effects !
- μ : controls the mixing between WFT/DFT
- Pb :
- Self-interaction errors .. ?

RS-DFT in a nutshell ...

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$
w_{e e}^{\mathrm{Ir}}\left(r_{12} ; \mu\right)=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}}
$$

μ : tunable parameter

- No divergence \Leftrightarrow no cusp in WFT!
- DFT: small r_{12} effects !
- μ : controls the mixing between WFT/DFT
- Pb :
- Self-interaction errors .. ?
- which μ.. ?

RS-DFT in a nutshell ...

- Hybrid WFT/DFT scheme (ex: range-separated hybrid)
- WFT: Non diverging interaction

$$
w_{e e}^{\mathrm{Ir}}\left(r_{12} ; \mu\right)=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}}
$$

μ : tunable parameter

- No divergence \Leftrightarrow no cusp in WFT!
- DFT: small r_{12} effects !
- μ : controls the mixing between WFT/DFT
- Pb :
- Self-interaction errors .. ?
- which μ.. ?
- choice of the functional .. ?

Where we are going

Idea: taking RS-DFT only for basis set error

In practice

- Formalism to merge WFT in \mathcal{B} and DFT
- Define properly a non diverging interaction within \mathcal{B}
- Fit it with the interaction used in RS-DFT
- Use RS-DFT functionals!:)

The Levy-Lieb formalism of DFT

$$
E_{0}=\min _{n(\mathbf{r})}\{\underbrace{F[n(\mathbf{r})]}_{\text {positive }}+\underbrace{\left(v_{\text {ne }} \mid n\right)}_{\text {negative }}\}
$$

- Nuclei-electron interaction energy:

$$
\left(v_{\mathrm{ne}} \mid n\right)=\int \mathrm{d} \mathbf{r} v_{\mathrm{ne}}(\mathbf{r}) n(\mathbf{r})
$$

\Rightarrow system dependent

- Levy-Lieb universal density functional:

$$
F[n(\mathbf{r})]=\min _{\Psi \rightarrow n(\mathbf{r})}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle
$$

- universal : holly grail of DFT !
- Here Ψ is developed in a complete basis set

Decomposition of $F\left[n^{\mathcal{B}}(\mathbf{r})\right]$

$$
F[n]=\min _{\psi \rightarrow n}\langle\psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle
$$

- We split $F[n(\mathbf{r})]$ using \mathcal{B} :

$$
\begin{equation*}
F[n(\mathbf{r})]=\underbrace{\min _{\Psi^{\mathcal{B}} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle}_{\text {within } \mathcal{B}}+\underbrace{\bar{E}^{\mathcal{B}}[n(\mathbf{r})]}_{\text {outside } \mathcal{B}} \tag{1}
\end{equation*}
$$

Decomposition of $F\left[n^{\mathcal{B}}(\mathbf{r})\right]$

$$
F[n]=\min _{\Psi \rightarrow n}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle
$$

- We split $F[n(\mathbf{r})]$ using \mathcal{B} :

$$
\begin{equation*}
F[n(\mathbf{r})]=\underbrace{\min _{\Psi^{\mathcal{B}} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle}_{\text {within } \mathcal{B}}+\underbrace{\bar{E}^{\mathcal{B}}[n(\mathbf{r})]}_{\text {outside } \mathcal{B}} \tag{1}
\end{equation*}
$$

$\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$ is the complementary density functional for \mathcal{B} :
$\bar{E}^{\mathcal{B}}[n(\mathbf{r})]=\min _{\Psi \rightarrow n(\mathbf{r})}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle-\min _{\Psi \mathcal{B} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle$
$\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$ must recover what is missing in $\Psi^{\mathcal{B}}$

Decomposition of $F\left[n^{\mathcal{B}}(\mathbf{r})\right]$

$$
F[n]=\min _{\Psi \rightarrow n}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle
$$

- We split $F[n(\mathbf{r})]$ using \mathcal{B} :

$$
\begin{equation*}
F[n(\mathbf{r})]=\underbrace{\min _{\mathcal{H}^{\mathcal{B}} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}^{\prime}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle}_{\text {within } \mathcal{B}}+\underbrace{\bar{E}^{\mathcal{B}}[n(\mathbf{r})]}_{\text {outside } \mathcal{B}} \tag{1}
\end{equation*}
$$

$\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$ is the complementary density functional for \mathcal{B} :

$$
\bar{E}^{\mathcal{B}}[n(\mathbf{r})]=\min _{\Psi \rightarrow n(\mathbf{r})}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle-\min _{\Psi \mathcal{B} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle
$$

$\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$ must recover what is missing in $\Psi^{\mathcal{B}}$

- $\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$ not universal, but a functional of the density !

Approximation of the FCl density

- Using the previous decomposition:

$$
\begin{equation*}
E_{0}=\min _{n(\mathbf{r})}\left\{\min _{\Psi^{\mathcal{B}} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle+\left(v_{\mathrm{ne}} \mid n\right)+\bar{E}^{\mathcal{B}}[n(\mathbf{r})]\right\} \tag{2}
\end{equation*}
$$

Approximation of the FCl density

- Using the previous decomposition:

$$
\begin{equation*}
E_{0}=\min _{n(\mathbf{r})}\left\{\min _{\mathcal{H}^{\mathcal{B}} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle+\left(v_{\mathrm{ne}} \mid n\right)+\bar{E}^{\mathcal{B}}[n(\mathbf{r})]\right\} \tag{2}
\end{equation*}
$$

- Needs to perform a minimization over $n(\mathbf{r})$

Approximation of the FCl density

- Using the previous decomposition:

$$
\begin{equation*}
E_{0}=\min _{n(\mathbf{r})}\left\{\min _{\mathcal{H}^{\mathcal{B}} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle+\left(v_{\mathrm{ne}} \mid n\right)+\bar{E}^{\mathcal{B}}[n(\mathbf{r})]\right\} \tag{2}
\end{equation*}
$$

- Needs to perform a minimization over $n(\mathbf{r})$
- But FCI densities are really good!

Approximation of the FCl density

- Using the previous decomposition:

$$
\begin{equation*}
E_{0}=\min _{n(\mathbf{r})}\left\{\min _{\Psi^{\mathcal{B}} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle+\left(v_{\mathrm{ne}} \mid n\right)+\bar{E}^{\mathcal{B}}[n(\mathbf{r})]\right\} \tag{2}
\end{equation*}
$$

- Needs to perform a minimization over $n(\mathbf{r})$
- But FCI densities are really good!
- Evaluation of (2) at $n(\mathbf{r})=n_{\Psi_{\mathrm{FCl}}^{\mathcal{B}}}(\mathbf{r})$: final equation

$$
\begin{equation*}
E_{0} \approx\left\langle\Psi_{\mathrm{FCI}}^{\mathcal{B}}\right| H\left|\Psi_{\mathrm{FCI}}^{\mathcal{B}}\right\rangle+\bar{E}^{\mathcal{B}}\left[n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right] \tag{3}
\end{equation*}
$$

Approximation of the FCl density

- Using the previous decomposition:

$$
\begin{equation*}
E_{0}=\min _{n(\mathbf{r})}\left\{\min _{\Psi^{\mathcal{B}} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle+\left(v_{\mathrm{ne}} \mid n\right)+\bar{E}^{\mathcal{B}}[n(\mathbf{r})]\right\} \tag{2}
\end{equation*}
$$

- Needs to perform a minimization over $n(\mathbf{r})$
- But FCI densities are really good!
- Evaluation of (2) at $n(\mathbf{r})=n_{\Psi_{\mathrm{FCl}}^{\mathcal{B}}}(\mathbf{r})$: final equation

$$
\begin{equation*}
E_{0} \approx\left\langle\Psi_{\mathrm{FCl}}^{\mathcal{B}}\right| H\left|\Psi_{\mathrm{FCI}}^{\mathcal{B}}\right\rangle+\bar{E}^{\mathcal{B}}\left[n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right] \tag{3}
\end{equation*}
$$

- Only approximation here :

$$
n_{0}(\mathbf{r}) \approx n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) \text { much weaker than } \Psi_{0} \approx \Psi_{\mathrm{FCI}}^{\mathcal{B}}
$$

Approximation of the FCl density

- Using the previous decomposition:

$$
\begin{equation*}
E_{0}=\min _{n(\mathbf{r})}\left\{\min _{\mathcal{F}^{\mathcal{B}} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle+\left(v_{\mathrm{ne}} \mid n\right)+\bar{E}^{\mathcal{B}}[n(\mathbf{r})]\right\} \tag{2}
\end{equation*}
$$

- Needs to perform a minimization over $n(\mathbf{r})$
- But FCI densities are really good !
- Evaluation of (2) at $n(\mathbf{r})=n_{\Psi_{\mathrm{FCl}}^{\mathcal{B}}}(\mathbf{r})$: final equation

$$
\begin{equation*}
E_{0} \approx\left\langle\Psi_{\mathrm{FCI}}^{\mathcal{B}}\right| H\left|\Psi_{\mathrm{FCI}}^{\mathcal{B}}\right\rangle+\bar{E}^{\mathcal{B}}\left[n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right] \tag{3}
\end{equation*}
$$

- Only approximation here :

$$
n_{0}(\mathbf{r}) \approx n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) \text { much weaker than } \Psi_{0} \approx \Psi_{\mathrm{FCl}}^{\mathcal{B}}
$$

- $\bar{E}^{\mathcal{B}}\left[n_{\Psi_{\mathrm{FCl}}^{\mathcal{B}}}(\mathbf{r})\right]$ must recover what is missing in \mathcal{B}
\Rightarrow a large part is short-range correlation effects !

Approximation of the FCl density

- Using the previous decomposition:

$$
\begin{equation*}
E_{0}=\min _{n(\mathbf{r})}\left\{\min _{\mathcal{F}^{\mathcal{B}} \rightarrow n(\mathbf{r})}\left\langle\Psi^{\mathcal{B}}\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle+\left(v_{\mathrm{ne}} \mid n\right)+\bar{E}^{\mathcal{B}}[n(\mathbf{r})]\right\} \tag{2}
\end{equation*}
$$

- Needs to perform a minimization over $n(\mathbf{r})$
- But FCI densities are really good !
- Evaluation of (2) at $n(\mathbf{r})=n_{\Psi_{\mathrm{FCl}}^{\mathcal{B}}}(\mathbf{r})$: final equation

$$
\begin{equation*}
E_{0} \approx\left\langle\Psi_{\mathrm{FCl}}^{\mathcal{B}}\right| H\left|\Psi_{\mathrm{FCI}}^{\mathcal{B}}\right\rangle+\bar{E}^{\mathcal{B}}\left[n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right] \tag{3}
\end{equation*}
$$

- Only approximation here :

$$
n_{0}(\mathbf{r}) \approx n_{\Psi_{\mathcal{F C I}}^{\mathcal{B}}}(\mathbf{r}) \text { much weaker than } \Psi_{0} \approx \Psi_{\mathrm{FCl}}^{\mathcal{B}}
$$

- $\bar{E}^{\mathcal{B}}\left[n_{\Psi_{\mathrm{FCl}}^{\mathcal{B}}}(\mathbf{r})\right]$ must recover what is missing in \mathcal{B}
\Rightarrow a large part is short-range correlation effects !
- Question: how to find $\bar{E}^{\mathcal{B}}\left[n_{\Psi_{\mathrm{FCl}}^{\mathcal{B}}}(\mathbf{r})\right]$?

Where we are going

Idea: taking RS-DFT only for basis set error

In practice

- Formalism to merge WFT in \mathcal{B} and DFT ©
- Define properly a non diverging interaction within \mathcal{B}
- Fit it with the interaction used in RS-DFT
- Use RS-DFT functionals

The effective e-e interaction within \mathcal{B}

- Expectation value of $\hat{W}_{\text {ee }}$ over $\Psi^{\mathcal{B}}$ as an integral real space

$$
\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle=\frac{1}{2} \iint \mathrm{~d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

The effective e-e interaction within \mathcal{B}

- Expectation value of $\hat{W}_{\text {ee }}$ over $\Psi^{\mathcal{B}}$ as an integral real space

$$
\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle=\frac{1}{2} \iint \mathrm{~d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

- Consider $\hat{W}_{\mathrm{ee}}^{\mathcal{B}}=\frac{1}{2} \sum_{i j k l \in \mathcal{B}} V_{i j}^{k l} \hat{a}_{k}^{\dagger} \hat{a}_{l}^{\dagger} \hat{a}_{j} \hat{a}_{i}$ in real space (operator in Fock space \Leftrightarrow distributions in real space)

The effective e-e interaction within \mathcal{B}

- Expectation value of $\hat{W}_{\text {ee }}$ over $\Psi^{\mathcal{B}}$ as an integral real space

$$
\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle=\frac{1}{2} \iint \mathrm{~d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

- Consider $\hat{W}_{\mathrm{ee}}^{\mathcal{B}}=\frac{1}{2} \sum_{i j k l \in \mathcal{B}} V_{i j}^{k l} \hat{a}_{k}^{\dagger} \hat{a}_{l}^{\dagger} \hat{a}_{j} \hat{a}_{i}$ in real space (operator in Fock space \Leftrightarrow distributions in real space)
- Do some more math (distributions again ...) and end-up with

$$
\begin{aligned}
& \left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}^{\mathcal{B}}\left|\Psi^{\mathcal{B}}\right\rangle=\frac{1}{2} \iint \mathrm{~d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} f_{\Psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right), \\
& f_{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{i j k l m n} V_{i j}^{k l} \Gamma_{m n}^{k l} \phi_{i}\left(\mathbf{r}_{1}\right) \phi_{j}\left(\mathbf{r}_{2}\right) \phi_{m}\left(\mathbf{r}_{1}\right) \phi_{n}\left(\mathbf{r}_{2}\right)
\end{aligned}
$$

The effective e-e interaction within \mathcal{B}

- Expectation value of $\hat{W}_{\text {ee }}$ over $\Psi^{\mathcal{B}}$ as an integral real space

$$
\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle=\frac{1}{2} \iint \mathrm{~d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

- Consider $\hat{W}_{\mathrm{ee}}^{\mathcal{B}}=\frac{1}{2} \sum_{i j k l \in \mathcal{B}} V_{i j}^{k l} \hat{a}_{k}^{\dagger} \hat{a}_{l}^{\dagger} \hat{a}_{j} \hat{a}_{i}$ in real space (operator in Fock space \Leftrightarrow distributions in real space)
- Do some more math (distributions again ...) and end-up with

$$
\begin{aligned}
& \left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\text {ee }}^{\mathcal{B}}\left|\Psi^{\mathcal{B}}\right\rangle=\frac{1}{2} \iint \mathrm{~d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} f_{\Psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right), \\
& f_{\Psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{i j k l m n} V_{i j}^{k l} \Gamma_{m n}^{k l} \phi_{i}\left(\mathbf{r}_{1}\right) \phi_{j}\left(\mathbf{r}_{2}\right) \phi_{m}\left(\mathbf{r}_{1}\right) \phi_{n}\left(\mathbf{r}_{2}\right)
\end{aligned}
$$

- as $\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle=\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\text {ee }}^{\mathcal{B}}\left|\Psi^{\mathcal{B}}\right\rangle$ one can write

$$
\iint \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\iint \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} f_{\psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

The effective e-e interaction within \mathcal{B}

- Expectation value of $\hat{W}_{\text {ee }}$ over $\Psi^{\mathcal{B}}$ as an integral real space

$$
\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle=\frac{1}{2} \iint \mathrm{~d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

- Consider $\hat{W}_{\text {ee }}^{\mathcal{B}}=\frac{1}{2} \sum_{i j k l \in \mathcal{B}} V_{i j}^{k l} \hat{a}_{k}^{\dagger} \hat{a}_{l}^{\dagger} \hat{a}_{j} \hat{a}_{i}$ in real space (operator in Fock space \Leftrightarrow distributions in real space)
- Do some more math (distributions again ...) and end-up with

$$
\begin{aligned}
& \left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}^{\mathcal{B}}\left|\Psi^{\mathcal{B}}\right\rangle=\frac{1}{2} \iint \mathrm{~d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} f_{\Psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right), \\
& f_{\Psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{i j k l m n} V_{i j}^{k l} \Gamma_{m n}^{k l} \phi_{i}\left(\mathbf{r}_{1}\right) \phi_{j}\left(\mathbf{r}_{2}\right) \phi_{m}\left(\mathbf{r}_{1}\right) \phi_{n}\left(\mathbf{r}_{2}\right)
\end{aligned}
$$

- as $\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle=\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\text {ee }}^{\mathcal{B}}\left|\Psi^{\mathcal{B}}\right\rangle$ one can write

$$
\iint \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\iint \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \frac{f_{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)}{n_{2}^{\mathcal{B}^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)} n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

The effective e-e interaction within \mathcal{B}

- Expectation value of $\hat{W}_{\text {ee }}$ over $\Psi^{\mathcal{B}}$ as an integral real space

$$
\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle=\frac{1}{2} \iint \mathrm{~d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

- Consider $\hat{W}_{\text {ee }}^{\mathcal{B}}=\frac{1}{2} \sum_{i j k l \in \mathcal{B}} V_{i j}^{k l} \hat{a}_{k}^{\dagger} \hat{a}_{l}^{\dagger} \hat{a}_{j} \hat{a}_{i}$ in real space (operator in Fock space \Leftrightarrow distributions in real space)
- Do some more math (distributions again ...) and end-up with

$$
\begin{aligned}
& \left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}^{\mathcal{B}}\left|\Psi^{\mathcal{B}}\right\rangle=\frac{1}{2} \iint \mathrm{~d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} f_{\Psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right), \\
& f_{\Psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{i j k l m n} V_{i j}^{k l} \Gamma_{m n}^{k l} \phi_{i}\left(\mathbf{r}_{1}\right) \phi_{j}\left(\mathbf{r}_{2}\right) \phi_{m}\left(\mathbf{r}_{1}\right) \phi_{n}\left(\mathbf{r}_{2}\right)
\end{aligned}
$$

- as $\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}\right\rangle=\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\text {ee }}^{\mathcal{B}}\left|\Psi^{\mathcal{B}}\right\rangle$ one can write

$$
\iint \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\iint \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} W_{\Psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

A few properties of $W_{\Psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$

$$
W_{\Psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)= \begin{cases}\frac{f_{\psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)}{n_{2}^{\mathcal{H}^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)}, & \text { if } n_{2}^{\Psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \neq 0 \\ \infty, & \text { otherwise }\end{cases}
$$

- $W_{\psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ depends on $\psi^{\mathcal{B}}$
- necessary finite at $r_{12}=0$ when \mathcal{B} is incomplete
- Because of its very construction

$$
\lim _{\mathcal{B} \rightarrow \infty} W_{\Psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{1}{r_{12}} \forall \Psi^{\mathcal{B}}
$$

Example Hellium with $\Psi^{\mathcal{B}}=\mathrm{FCl}$

Example Hellium with $\Psi^{\mathcal{B}}=\mathrm{FCl}$

Example Hellium with $\Psi^{\mathcal{B}}=\mathrm{HF}$

Where we are going

Idea: taking RS-DFT only for basis set error

In practice

- Formalism to merge WFT in \mathcal{B} and DFT $)^{-}$
- Define properly a non diverging interaction within \mathcal{B} ©
- Fit it with the interaction used in RS-DFT
- Use RS-DFT functionals

Fit $W_{\Psi_{\mathcal{B}}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)$ with RS-DFT interaction

- RS-DFT uses non diverging interaction tuned by μ

$$
w_{e e}^{\operatorname{Ir}}\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \mu\right)=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}}
$$

- Fit $W_{\Psi_{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ at coalescence, i.e. $\mathbf{r}_{1}=\mathbf{r}_{2}=\mathbf{r}$

$$
W_{\Psi_{\mathcal{B}}}(\mathbf{r}, \mathbf{r})=w_{e e}^{\mathrm{Ir}}(\mathbf{r}, \mathbf{r} ; \mu)
$$

- Leads to $\mu(\mathbf{r})$ varying in space

$$
\mu_{\Psi_{\mathcal{B}}}(\mathbf{r})=\frac{\sqrt{\pi}}{2} W_{\Psi_{\mathcal{B}}}(\mathbf{r}, \mathbf{r})
$$

$$
\lim _{\mathcal{B} \rightarrow \infty} \mu_{\Psi_{\mathcal{B}}}(\mathbf{r})=+\infty \quad \forall \Psi_{\mathcal{B}} \text { and } \forall \mathbf{r}
$$

Example Hellium with $\psi^{\mathcal{B}}=\mathrm{FCl}$

Example Hellium with $\psi^{\mathcal{B}}=\mathrm{HF}$

Where we are going

Idea: taking RS-DFT only for basis set error

In practice

- Formalism to merge WFT in \mathcal{B} and DFT $)^{-}$
- Define properly a non diverging interaction within \mathcal{B} ©
- Fit it with the interaction used in RS-DFT ©
- Use RS-DFT functionals

Approximation for the functional

Using RSDFT functionals

- Use the multi determinantal correlation functionals $\epsilon_{c}^{\mathrm{md}}(n ; \mu)$ (Toulouse et al)

$$
\begin{gathered}
E_{c}^{\mathrm{md}}=\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}(n(\mathbf{r}) ; \mu) \\
\lim _{\mu \rightarrow \infty} \epsilon_{c}^{\mathrm{md}}(n ; \mu)=0
\end{gathered}
$$

Approximation for the functional

Using RSDFT functionals

- Use the multi determinantal correlation functionals $\epsilon_{c}^{\mathrm{md}}(n ; \mu)$ (Toulouse et al)

$$
\begin{gathered}
E_{c}^{\mathrm{md}}=\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}(n(\mathbf{r}) ; \mu) \\
\lim _{\mu \rightarrow \infty} \epsilon_{c}^{\mathrm{md}}(n ; \mu)=0
\end{gathered}
$$

- Use the range separation parameter $\mu_{\Psi_{\mathcal{B}}}(\mathbf{r})$

$$
\bar{E}^{\mathcal{B}}[n(\mathbf{r})] \approx \int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n(\mathbf{r}) ; \mu_{\Psi_{\mathcal{B}}}(\mathbf{r})\right)
$$

- $\epsilon_{c}^{\mathrm{md}}(n ; \mu)$: LDA already existed, new PBE version recently proposed (JCP, 2019)

Final working equations

$$
E_{0} \approx E_{\mathrm{FCl}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{\mathrm{c}}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{Fl}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{Cl}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

At the end of the day

- $\mu_{\Psi_{\mathcal{B}}}(\mathbf{r})$ Automatically adapts to \mathcal{B}
- Correct limit at the Complete Basis Set limit
- Use pre-existing DFT methodology

The total energy of the He atom

Systematically improve the results !

Generalization to any wave function method

- Exact framework works with FCI energies, densities and WF

$$
E_{0} \approx E_{\mathrm{FCI}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

Generalization to any wave function method

- Exact framework works with FCI energies, densities and WF

$$
E_{0} \approx E_{\mathrm{FCI}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

Generalization to any wave function method

- Exact framework works with FCI energies, densities and WF

$$
E_{0} \approx E_{\mathrm{FCI}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

- What do you need is:

$$
E_{0} \approx E_{\mathbf{X}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\mathrm{Y}}(\mathbf{r}) ; \mu_{\Psi \mathcal{B}}(\mathbf{r})\right)
$$

Generalization to any wave function method

- Exact framework works with FCI energies, densities and WF

$$
E_{0} \approx E_{\mathrm{FCI}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

- What do you need is:

$$
E_{0} \approx E_{\mathbf{X}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\mathrm{Y}}(\mathbf{r}) ; \mu_{\Psi \mathcal{B}}(\mathbf{r})\right)
$$

- CIPSI calculations:

Generalization to any wave function method

- Exact framework works with FCI energies, densities and WF

$$
E_{0} \approx E_{\mathrm{FCI}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

- What do you need is:

$$
E_{0} \approx E_{\mathbf{X}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\mathrm{Y}}(\mathbf{r}) ; \mu_{\Psi^{\mathcal{B}}}(\mathbf{r})\right)
$$

- CIPSI calculations:
- $E_{\mathrm{X}}^{\mathcal{B}}:$ CIPSI energy $\approx E_{\mathrm{FCI}}^{\mathcal{B}}$

Generalization to any wave function method

- Exact framework works with FCI energies, densities and WF

$$
E_{0} \approx E_{\mathrm{FCI}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

- What do you need is:

$$
E_{0} \approx E_{\mathbf{X}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\mathrm{Y}}(\mathbf{r}) ; \mu_{\Psi \mathcal{B}}(\mathbf{r})\right)
$$

- CIPSI calculations:
- $E_{\mathrm{X}}^{\mathcal{B}}:$ CIPSI energy $\approx E_{\mathrm{FCI}}^{\mathcal{B}}$
- $n_{\mathrm{Y}}(\mathbf{r}):$ CIPSI density $\approx n_{\Psi_{\mathrm{FCI}}^{\prime}}(\mathbf{r})$

Generalization to any wave function method

- Exact framework works with FCI energies, densities and WF

$$
E_{0} \approx E_{\mathrm{FCI}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

- What do you need is:

$$
E_{0} \approx E_{\mathbf{X}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\mathrm{Y}}(\mathbf{r}) ; \mu_{\Psi \mathcal{B}}(\mathbf{r})\right)
$$

- CIPSI calculations:
- $E_{\mathrm{x}}^{\mathcal{B}}:$ CIPSI energy $\approx E_{\mathrm{FCI}}^{\mathcal{B}}$
- $n_{\mathrm{Y}}(\mathbf{r}):$ CIPSI density $\approx n_{\Psi_{\mathrm{FCI}}^{\prime}}(\mathbf{r})$
- $\Psi^{\mathcal{B}}: \mathrm{HF}$

Generalization to any wave function method

- Exact framework works with FCI energies, densities and WF

$$
E_{0} \approx E_{\mathrm{FCI}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

- What do you need is:

$$
E_{0} \approx E_{\mathbf{X}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\mathrm{Y}}(\mathbf{r}) ; \mu_{\Psi \mathcal{B}}(\mathbf{r})\right)
$$

- CIPSI calculations:
- $E_{\mathrm{x}}^{\mathcal{B}}:$ CIPSI energy $\approx E_{\mathrm{FCI}}^{\mathcal{B}}$
- $n_{\mathrm{Y}}(\mathbf{r})$: CIPSI density $\approx n_{\Psi_{\mathrm{FCI}}^{\prime}}(\mathbf{r})$
- $\Psi^{\mathcal{B}}$: HF
- $\operatorname{CCSD}(\mathrm{T})$ calculations:

Generalization to any wave function method

- Exact framework works with FCI energies, densities and WF

$$
E_{0} \approx E_{\mathrm{FCI}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{FCl}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

- What do you need is:

$$
E_{0} \approx E_{\mathbf{X}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\mathrm{Y}}(\mathbf{r}) ; \mu_{\Psi \mathcal{B}}(\mathbf{r})\right)
$$

- CIPSI calculations:
- $E_{\mathrm{x}}^{\mathcal{B}}:$ CIPSI energy $\approx E_{\mathrm{FCI}}^{\mathcal{B}}$
- $n_{\mathrm{Y}}(\mathbf{r})$: CIPSI density $\approx n_{\Psi_{\mathrm{FCI}}^{B}}(\mathbf{r})$
- $\Psi^{\mathcal{B}}$: HF
- $\operatorname{CCSD}(\mathrm{T})$ calculations:
- $E_{\mathrm{X}}^{\mathcal{B}}: \operatorname{CCSD}(\mathrm{T})$ energy $\approx E_{\mathrm{FCI}}^{\mathcal{B}}$

Generalization to any wave function method

- Exact framework works with FCI energies, densities and WF

$$
E_{0} \approx E_{\mathrm{FCI}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

- What do you need is:

$$
E_{0} \approx E_{\mathbf{X}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\mathrm{Y}}(\mathbf{r}) ; \mu_{\Psi \mathcal{B}}(\mathbf{r})\right)
$$

- CIPSI calculations:
- $E_{\mathrm{x}}^{\mathcal{B}}:$ CIPSI energy $\approx E_{\mathrm{FCI}}^{\mathcal{B}}$
- $n_{\mathrm{Y}}(\mathbf{r})$: CIPSI density $\approx n_{\Psi_{\mathrm{FCI}}^{B}}(\mathbf{r})$
- $\Psi^{\mathcal{B}}$: HF
- $\operatorname{CCSD}(\mathrm{T})$ calculations:
- $E_{\mathrm{X}}^{\mathcal{B}}: \operatorname{CCSD}(\mathrm{T})$ energy $\approx E_{\mathrm{FCl}}^{\mathcal{B}}$
- $n_{\mathrm{Y}}(\mathbf{r})$: HF density $\approx n_{\Psi_{\mathrm{FCI}}^{\prime}}(\mathbf{r})$

Generalization to any wave function method

- Exact framework works with FCI energies, densities and WF

$$
E_{0} \approx E_{\mathrm{FCI}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r}) ; \mu_{\Psi_{\mathrm{FCI}}^{\mathcal{B}}}(\mathbf{r})\right)
$$

- What do you need is:

$$
E_{0} \approx E_{\mathbf{X}}^{\mathcal{B}}+\int \mathrm{d} \mathbf{r} \epsilon_{c}^{\mathrm{md}}\left(n_{\mathrm{Y}}(\mathbf{r}) ; \mu_{\Psi \mathcal{B}}(\mathbf{r})\right)
$$

- CIPSI calculations:
- $E_{\mathrm{x}}^{\mathcal{B}}:$ CIPSI energy $\approx E_{\mathrm{FCI}}^{\mathcal{B}}$
- $n_{\mathrm{Y}}(\mathbf{r})$: CIPSI density $\approx n_{\Psi_{\mathrm{FCI}}^{B}}(\mathbf{r})$
- $\Psi^{\mathcal{B}}$: HF
- $\operatorname{CCSD}(\mathrm{T})$ calculations:
- $E_{\mathrm{X}}^{\mathcal{B}}: \operatorname{CCSD}(\mathrm{T})$ energy $\approx E_{\mathrm{FCl}}^{\mathcal{B}}$
- $n_{\mathrm{Y}}(\mathbf{r})$: HF density $\approx n_{\Psi_{\mathrm{FCI}}^{\prime}}(\mathbf{r})$
- $\Psi^{\mathcal{B}}$: HF

Example: CIPSI ionization potentials of the B-Ne series

Example: CIPSI ionization potentials of the B-Ne series

Example: CIPSI ionization potentials of the B-Ne series

Example: CIPSI ionization potentials of the B-Ne series

Example: CIPSI ionization potentials of the B-Ne series

The G2 set with $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{CCSD}(\mathrm{T})+\mathrm{PBE}$

The G2 set with $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{CCSD}(\mathrm{T})+\mathrm{PBE}$

Statistical analysis of the G 2 set with $\operatorname{CCSD}(\mathrm{T})+\mathrm{PBE}$

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD $(T) /$ cc-pVTZ	6.06	6.84	14.25	2
CCSD $(T) /$ cc-pVQZ	2.50	2.86	6.75	9
CCSD(T)/cc-pV5Z	1.28	1.46	3.46	21

Statistical analysis of the G 2 set with $\mathrm{CCSD}(\mathrm{T})+\mathrm{PBE}$

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD(T)/cc-pVTZ	6.06	6.84	14.25	2
CCSD(T)/cc-pVQZ	2.50	2.86	6.75	9
CCSD(T)/cc-pV5Z	1.28	1.46	3.46	21
CCSD(T)+PBE/cc-pVDZ	1.96	2.59	7.33	19
CCSD(T)+PBE/cc-pVTZ	0.85	1.11	2.64	36
CCSD(T)+PBE/cc-pVQZ	0.31	0.42	1.16	53

Statistical analysis of the G 2 set with $\operatorname{CCSD}(\mathrm{T})+\mathrm{PBE}$

Method	MAD	RMSD	MAX	CA
CCSD(T)/cc-pVDZ	14.29	16.21	36.95	2
CCSD(T)/cc-pVTZ	6.06	6.84	14.25	2
CCSD(T)/cc-pVQZ	2.50	2.86	6.75	9
CCSD(T)/cc-pV5Z	1.28	1.46	3.46	21
CCSD(T)+PBE/cc-pVDZ	1.96	2.59	7.33	19
CCSD(T)+PBE/cc-pVTZ	0.85	1.11	2.64	36
CCSD(T)+PBE/cc-pVQZ	0.31	0.42	1.16	53

To compute the DFT part we need only

- The HF one body density
- The HF two body density for α / β pairs
- The MP2 integrals very cheap compared to $\operatorname{CCSD}(\mathrm{T})$

Application to excited states: doubly excited states

Carbon dimer@exFCI

Carbon dimer@exFCI + PBEot

Carbon dimer@exFCI+LDA

Conclusion and work in progress

What we obtained

- Proper theory to link basis set error and DFT
J. Chem. Phys. 149, 194301 (2018)
- No cusp \Leftrightarrow non divergent interaction !
- Automatic, simple and cheap
- Correct limit when \mathcal{B} is complete
- Application to weak correlation, CCSD(T) and CIPSI J. Phys. Chem. Let., 10, 2931-2937 (2019)
- Application to excited states, J. Chem. Phys. 151, (2019)

What we're doing now

- Development of new functionals for strong correlation
- Self-consistent formalism, properties, GW
- Formal aspects, new formalisms to connect \mathcal{B} and DFT

Collaborators

- Julien Toulouse (introduction to DFT, enthousiasm ...)
- Roland Assaraf (distributions ...)
- Barthelemy Pradines (self consistent version, GW ...)
- PF Loos (excited states, GW ...)
- Andreas Savin (stimulating discussions ...)

Atomization energies with $\mathrm{CIPSI} / \mathrm{CCSD}(\mathrm{T})$

Link with the ECMD functionals in RSDFT

- Definition of $\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$

$$
\begin{aligned}
& \bar{E}^{\mathcal{B}}[n]=\langle\Psi[n]| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi[n]\rangle-\left\langle\Psi^{\mathcal{B}}[n]\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}[n]\right\rangle \\
& \Psi[n]=\operatorname{argmin}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle, \quad \Psi^{\mathcal{B}}[n]=\operatorname{argmin}\langle\Psi| \hat{T}^{\mathcal{B}}+\hat{W}_{\text {ee }}^{\mathcal{B}}|\Psi\rangle
\end{aligned}
$$

Link with the ECMD functionals in RSDFT

- Definition of $\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$

$$
\begin{aligned}
& \bar{E}^{\mathcal{B}}[n]=\langle\Psi[n]| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi[n]\rangle-\left\langle\Psi^{\mathcal{B}}[n]\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}[n]\right\rangle \\
& \Psi[n]=\operatorname{argmin}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle, \quad \Psi^{\mathcal{B}}[n]=\operatorname{argmin}\langle\Psi| \hat{T}^{\mathcal{B}}+\hat{W}_{\mathrm{ee}}^{\mathcal{B}}|\Psi\rangle
\end{aligned}
$$

- Definition of multi-determinant correlation functional (ECMD) of Toulouse et. al.

$$
\begin{aligned}
& \bar{E}^{\mu}[n]=\langle\Psi[n]| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi[n]\rangle-\left\langle\Psi^{\mu}[n]\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mu}[n]\right\rangle \\
& \Psi[n]=\operatorname{argmin}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle, \quad \Psi^{\mu}[n]=\operatorname{argmin}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}^{\mu}|\Psi\rangle
\end{aligned}
$$

Link with the ECMD functionals in RSDFT

- Definition of $\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$

$$
\begin{aligned}
& \bar{E}^{\mathcal{B}}[n]=\langle\Psi[n]| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi[n]\rangle-\left\langle\Psi^{\mathcal{B}}[n]\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}[n]\right\rangle \\
& \Psi[n]=\operatorname{argmin}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle, \quad \Psi^{\mathcal{B}}[n]=\operatorname{argmin}\langle\Psi| \hat{T}^{\mathcal{B}}+\hat{W}_{\mathrm{ee}}^{\mathcal{B}}|\Psi\rangle
\end{aligned}
$$

- Definition of multi-determinant correlation functional (ECMD) of Toulouse et. al.

$$
\begin{aligned}
& \bar{E}^{\mu}[n]=\langle\Psi[n]| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi[n]\rangle-\left\langle\Psi^{\mu}[n]\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mu}[n]\right\rangle \\
& \Psi[n]=\operatorname{argmin}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle, \quad \Psi^{\mu}[n]=\operatorname{argmin}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}^{\mu}|\Psi\rangle
\end{aligned}
$$

- Make a link between $\Psi^{\mathcal{B}}$ and Ψ^{μ}

Link with the ECMD functionals in RSDFT

- Definition of $\bar{E}^{\mathcal{B}}[n(\mathbf{r})]$

$$
\begin{aligned}
& \bar{E}^{\mathcal{B}}[n]=\langle\Psi[n]| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi[n]\rangle-\left\langle\Psi^{\mathcal{B}}[n]\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mathcal{B}}[n]\right\rangle \\
& \Psi[n]=\operatorname{argmin}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle, \quad \Psi^{\mathcal{B}}[n]=\operatorname{argmin}\langle\Psi| \hat{T}^{\mathcal{B}}+\hat{W}_{\mathrm{ee}}^{\mathcal{B}}|\Psi\rangle
\end{aligned}
$$

- Definition of multi-determinant correlation functional (ECMD) of Toulouse et. al.

$$
\begin{aligned}
& \bar{E}^{\mu}[n]=\langle\Psi[n]| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi[n]\rangle-\left\langle\Psi^{\mu}[n]\right| \hat{T}+\hat{W}_{\mathrm{ee}}\left|\Psi^{\mu}[n]\right\rangle \\
& \Psi[n]=\operatorname{argmin}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}|\Psi\rangle, \quad \Psi^{\mu}[n]=\operatorname{argmin}\langle\Psi| \hat{T}+\hat{W}_{\mathrm{ee}}^{\mu}|\Psi\rangle
\end{aligned}
$$

- Make a link between $\Psi^{\mathcal{B}}$ and Ψ^{μ}
- The way to make a link: connect $\hat{W}_{\text {ee }}^{\mathcal{B}}$ and $\hat{W}_{\text {ee }}^{\mu}$

PES of N_{2} in $\mathrm{AVXZ}(\mathrm{X}=\mathrm{D}, \mathrm{T})$

PES of H_{10} in $\mathrm{VXZ}(\mathrm{X}=\mathrm{D}, \mathrm{T})$

The effective operator in practice

$$
\begin{aligned}
& \hat{W}_{e \mathrm{e}}^{\mathcal{B}}=\frac{1}{2} \sum_{i j k l \in \mathcal{B}} V_{i j}^{k l} \hat{a}_{k}^{\dagger} \hat{a}_{l}^{\dagger} \hat{a}_{j} \hat{a}_{i}, \quad \hat{a}_{k}^{\dagger}=\int d \mathbf{r}_{1} \phi_{k}\left(\mathbf{r}_{1}\right) \hat{\Psi}^{\dagger}\left(\mathbf{r}_{1}\right) \\
& \hat{W}_{\mathrm{ee}}^{\mathcal{B}}=\int d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{1^{\prime}} d \mathbf{r}_{2^{\prime}} w_{e e}^{\mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}}, \mathbf{r}_{2^{\prime}}\right) \hat{\Psi}^{\dagger}\left(\mathbf{r}_{1}\right) \hat{\Psi}^{\dagger}\left(\mathbf{r}_{2}\right) \hat{\Psi}\left(\mathbf{r}_{2^{\prime}}\right) \hat{\Psi}\left(\mathbf{r}_{1^{\prime}}\right) \\
& w_{e e}^{\mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}}, \mathbf{r}_{2^{\prime}}\right)=\sum_{i j k l \in \mathcal{B}} V_{i j}^{k l} \phi_{k}\left(\mathbf{r}_{1}\right) \phi_{l}\left(\mathbf{r}_{2}\right) \phi_{j}\left(\mathbf{r}_{2^{\prime}}\right) \phi_{i}\left(\mathbf{r}_{1^{\prime}}\right)
\end{aligned}
$$

Here $w_{e e}^{\mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}}, \mathbf{r}_{2^{\prime}}\right)$ MUST NOT be considered as function as

$$
\lim _{\mathcal{B} \rightarrow \infty} w_{e e}^{\mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}}, \mathbf{r}_{2^{\prime}}\right)=\delta\left(\mathbf{r}_{1}-\mathbf{r}_{1^{\prime}}\right) \delta\left(\mathbf{r}_{2}-\mathbf{r}_{2^{\prime}}\right) \frac{1}{r_{12}}
$$

The diagonal elements $w_{e e}^{\mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1}, \mathbf{r}_{2}\right)$ do not make sense \ldots

The effective operator in practice

$w_{e e}^{\mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}}, \mathbf{r}_{2^{\prime}}\right)$ MUST be considered as a distribution
Therefore, one MUST integrate $w_{e e}^{\mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}}, \mathbf{r}_{2^{\prime}}\right)$ over functions

$$
\begin{aligned}
\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\text {ee }}^{\mathcal{B}}\left|\Psi^{\mathcal{B}}\right\rangle= & \int d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{1^{\prime}} d \mathbf{r}_{2^{\prime}} w_{e e}^{\mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}}, \mathbf{r}_{2^{\prime}}\right) \\
& \left\langle\Psi^{\mathcal{B}}\right| \hat{\Psi}^{\dagger}\left(\mathbf{r}_{1}\right) \hat{\Psi}^{\dagger}\left(\mathbf{r}_{2}\right) \hat{\Psi}\left(\mathbf{r}_{2^{\prime}}\right) \hat{\Psi}\left(\mathbf{r}_{1^{\prime}}\right)\left|\Psi^{\mathcal{B}}\right\rangle \\
= & \int d \mathbf{r}_{1} d \mathbf{r}_{2} d \mathbf{r}_{1^{\prime}} d \mathbf{r}_{2^{\prime}} w_{e e}^{\mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}} \mathbf{r}_{2^{\prime}}\right) n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}} \mathbf{r}_{2^{\prime}}\right)
\end{aligned}
$$

Apply the distribution $w_{e e}^{\mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}}, \mathbf{r}_{2^{\prime}}\right)$, integrate over $\mathbf{r}_{1^{\prime}}$ and $\mathbf{r}_{2^{\prime}}$

$$
\begin{aligned}
\left\langle\Psi^{\mathcal{B}}\right| \hat{W}_{\mathrm{ee}}^{\mathcal{B}}\left|\Psi^{\mathcal{B}}\right\rangle & =\int d \mathbf{r}_{1} d \mathbf{r}_{2}\left(\int d \mathbf{r}_{1^{\prime}} d \mathbf{r}_{2^{\prime}} w_{e e}^{\mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}} \mathbf{r}_{2^{\prime}}\right) n_{2}^{\psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1^{\prime}} \mathbf{r}_{2^{\prime}}\right)\right) \\
& =\int d \mathbf{r}_{1} d \mathbf{r}_{2} \quad f_{\Psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
\end{aligned}
$$

Why HF is such a good approximation for μ ?

$$
W_{\Psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{f_{\Psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)}{n_{2}^{\Psi^{\mathcal{B}}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)}
$$

- Everything is within $f_{\mathcal{\mathcal { B }}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$
- The explicit form for $f_{\Psi \mathcal{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ for $\Psi^{\mathcal{B}}=\mathrm{HF}$ for α / β electrons

$$
\begin{equation*}
f_{\mathrm{HF}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{k \in \alpha} \sum_{l \in \beta} \sum_{i j \in \mathcal{B}} V_{i j}^{k l} \phi_{i}\left(\mathbf{r}_{1}\right) \phi_{j}\left(\mathbf{r}_{2}\right) \phi_{k}\left(\mathbf{r}_{1}\right) \phi_{l}\left(\mathbf{r}_{2}\right) \tag{4}
\end{equation*}
$$

- $\sum_{i j \in \mathcal{B}} \Leftrightarrow$ one sees "all the basis $\mathcal{B}^{\prime \prime}$
- Integrals involved $V_{i j}^{a b}$ like in usual MP2 calculations
- Dominant effect to quantify the quality of the basis set

Finite basis-set approximation for the exact density

- In actual calculation: finite one-electron basis set \mathcal{B}
\Rightarrow search over a subet of densities $n^{\mathcal{B}}(\mathbf{r})$

$$
E_{0}^{\mathcal{B}}=\min _{n^{\mathcal{B}}(\mathbf{r})}\left\{F\left[n^{\mathcal{B}}(\mathbf{r})\right]+\left(v_{\mathrm{ne}} \mid n^{\mathcal{B}}\right)\right\}
$$

- $n_{0}^{\mathcal{B}}(\mathbf{r})$ is the density giving the lowest energy
- $n_{0}(\mathbf{r})$ might not be representable within \mathcal{B}
$\Rightarrow E_{0}^{\mathcal{B}} \geq E_{0}$
- In practice fast convergence of the density with \mathcal{B}

$$
\begin{aligned}
& n_{0}(\mathbf{r}) \approx n_{0}^{\mathcal{B}}(\mathbf{r}) \\
& E_{0} \approx E_{0}^{\mathcal{B}}
\end{aligned}
$$

What about DFT and the basis set ?

- How does DFT works ?
- expresses the two-body density with one-body density

$$
n_{2}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\underbrace{n\left(\mathbf{r}_{1}\right) n\left(\mathbf{r}_{2}\right)}_{\text {System dependant }}+\underbrace{n_{\mathrm{xc}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, n, \nabla n, \ldots\right)}_{\text {quite universal }}
$$

- Example: LDA $n_{\mathrm{xc}}(n)$ is taken from the electron gas
- $n_{\mathrm{xc}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ when $r_{12} \approx 0 \Leftrightarrow$ electron cusp \Leftrightarrow universal ! \Rightarrow short-range correlation effects well reproduced!
- n converges rapidly with \mathcal{B}
- Long-range correlation effects are less universal ...

