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Hydrogen spectrum

“challenging the continuum” … is back !



 Ionization processes of atoms/molecules N-BODY

 Generalized Sturmian Function (GSF) method

implemented to study collision processes
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Calculation of multidifferential cross sections

Ionization of atoms and molecules by photon or particle impact

TARGETS  
- atoms  (H, He, Be, Ne, Ar, Na, Mg, Au, …)
- molecules (H2O, NH3, CH4, DNA basis, …)

THEORY

EXPERIENCE

WHY DO WE WANT DIFFERENTIAL CROSS SECTIONS?
 needed as database for applications (e.g. plasmas or radiobiology) 
 test theoretical models in more details   - the collision dynamics

- the wave functions
 information/test on electronic correlation
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SINGLE IONIZATION : (e,2e) on H

e- + H            p+ + e- + e-

H
e- (Ei,ki)

e- (E0, k0)

e- (E1, k1)        

p
101

3

dEdd

d





Detection in coincidence: 

Kinematically complete

 Pure 3-body problem in final channel

 Solved numerically at the end of century 
(24 Dec 1999 – Rescigno et al)

 Agreement between theories and experiments

TDCS

TCS
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Hyperspherical front 
(double continuum) 
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DOUBLE IONIZATION : (,2e)  + He            He++ + e- + e-

He

e- (E1, k1)        

He++

Pure 3-body problem
(3 interactions)

221

3

dEdd

d





γ

e- (E2, k2)

Detection in coincidence: 

Kinematically complete
FDCS

r1

e-

r2

e-

He2+
(Z=2)

r12

Helium Pure 3-body 
Coulomb problem

FOCUS: Continuum states NOT bound states
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Double photoionization of He  + He   He++ + e- + e-

ECS (McCurdy et al, PRA, 2004)

20 eV above   
threshold

kskp

kpkd

kdkf

GSF (Randazzo et al, EPJD, 2015)

Double ionization
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Double photoionization (γ,2e) of He
TDCS for photon energy 20 eV above threshold

Equal energy sharing E1=E2=10 eV; different 1 values

Absolute 
scale

Save 75%
of memory 
storage

(Randazzo et al, EPJD, 2015)



DOUBLE IONIZATION : (e,3e) e- + He            He++ + e- + e- + e-

He

e- (Ei,ki)

e- (E0, k0)

e- (E2, k2)

e- (E1, k1)        

He++

Pure 4-body problem 
(6 interactions)

21021
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dEdEddd

d




SINGLE IONIZATION : (p,2e) p+ He              He+ + p + e-

He
p (Ei,ki)

p(E0, k0)

e- (E1, k1)        

He+

4-body problem
(6 interactions)

101

3

dEdd

d





Detection in coincidence: 

Kinematically complete

TDCS

Detection in coincidence: 

Kinematically complete
FDCS
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Need description (wave function) 
of charged particles in Coulomb interaction

• BOUND STATES (target) 

• CONTINUUM STATES (single or double)
(e.g. two electrons escaping from a positive nucleus – THREE-BODY)

Complete experiments  multiply differential cross sections
 transition matrix element

6D, 9D integrals

N-Body  few body (2, 3 or 4)

Solve NR time-independent Schrödinger equation 
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M
γ

e- (E1, k1)        

M+

In the final state the ejected electron 
will « see » asymptotically a charge 1

Contrary to the bound case here the energy E is known.
Highly oscillating and long-range.
How to represent the continuum? 

The choice is crucial for efficiency !

Continuum states 

Central potential U(r) with a Coulomb tail :  - Z / r 
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LIKE most other numerical approaches it uses two-body basis functions

BUT

UNLIKE other methods the basis functions have adequate asymptotic behavior

Note: three body  also in hyperspherical coordinates

GENERALIZED STURMIAN APPROACH



14

Generalized Sturmian Functions (two-body GSF):   Sn,l(r)

 are (numerical) solutions of a Sturm-Liouville differential equation

 form a complete and discrete set   BASIS SET (index n)
(spectral method)

 have a unique and appropriate asymptotic behavior
(with correct energy for continuum states or expected decay for bound states)

 can be constructed to properly represent the electron-nucleus cusp
 concentrate the effort in the inner part where interaction takes place

 kr
k

Z
iikr

ln erS
2ln

, )(



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BOUND (E<0) Same boundary 
conditions (for all n)

ar
ln erS )(,
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GROUND STATE

He: BEST ground state energy with uncorrelated product

Exotic systems e.g. positronium ion

Bound states 



17

EXCITED STATES

DOUBLY EXCITED STATES
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Coulombic CONTINUUM

states (E=k2/2 > 0)

 kr
k

Z
iikr

ln erS
2ln

, )(




Same boundary 
conditions (for all n)

g
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Solve   (H-E)Ψ = 0

Set    Ψ = Ψ0+ Ψ+
sc

Driven Equation   

(H-E) Ψ+
sc = W Ψ0

Initial state Scattering     
function  

GENERALIZED STURMIAN APPROACH

Difficulties:
Coulomb boundary conditions 
(two-body and three-body) 

 Efficient basis (smaller computational resources)
Adequate asymptotic conditions already built-in 
 concentrate the effort in the inner part where interaction takes place

 ADVANTAGE: the extraction of amplitudes and differential cross sections 
directly from the scattering wave function Ψ+

sc

(no need to evaluate a transition matrix element )
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Single continuum (two-body)
1) Single photoionization of atoms and molecules (,e)

2) Single electron impact ionization of molecules (e,2e)

3) Photodetachment of anions (γ,e)

4) Two-photon single ionisation (2γ,e)

Applications to ionization processes

Double continuum (three-body)
5) Double photoionization of He (,2e) – pure 3-body

6) Double electron impact ionization of He  (e,3e) – pure 4-body

7) Double proton impact ionization of He (p,p2e) – pure 4-body

8) Double photoionization of molecules (,2e)
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What about molecules?

- N-BODY 
- Multicenter nature
- Average over angular orientation

Calculations on small polyatomic molecules 
like H20, CH4, NH3

Granados et al,  Adv Quantum Chem, 2016, 73, 3
C. Granados and L.U. Ancarani, Eur.Phys.J D, 2017, 71, 65
Randazzo et al, PRA, 2020

(1a1)2(2a1)2(1b2)2(3a1)2(1b1)2H2O

3 nuclei + 10 electrons :  approximations (BO, FC, OCE, …)
 few body problem
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Photoelectron spectrum

1) Single photoionization

Inner valence

(Granados et al, 
Adv Quantum Chem, 2016)

M
γ

e- (E1, k1)        

M+

 + M             M+ + e-



2) Single ionization by electron impact

e- + M   M+ + e- + e-

bab dEdd

d



3
TDCS

(e,2e) experiment
M

e- (Ei,ki)

e- (Ea, ka)

e- (Eb, kb)        

M+

Binary Recoil

Momentum transfer: K=q= ki –ka 

1b1 and 3a1

Ei=250 eV
Eb=10 eV
θa=-15°

EXPT : Milne-Brownlie et al
PRA  69 (2004) 032701
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3) Double photoionization

First measurements 2018 (photons of 63 and 65 eV) !!
First calculations 2019  (Randazzo et al, PRA, 2020)

E1=E2=10 eV
θ1=60°



Take home message

 Ionization processes 
 N-body problem involving continuum states of given energy

(highly oscillating + long range)

 Generalized Sturmian Functions (GSF)
- computationally efficient because
appropriate boundary conditions are built in the basis elements

 concentrate the effort in the region where it is interesting
- implemented to describe the single and double continuum 

of atoms and molecules 

Thank you for your attention !


