Day 3 (LAST!) of a boring
lecture series

Carl Bender
Washington University



DID WE PROVE THAT THE
EIGENVALUES ARE REAL?

NO!!

Why not??



V(x) = —x* < :f‘ v

J

This upside-down potential looks unstable (on the real axis)

Complex variables explains why it has quantum bound states




To begin, we extend simple
classical harmonic motion
to the complex domain...




Classical harmonic oscillator

Back and forth motion on the real-x axis:

€«>

T

Turning point Turning point
E = p2 + X2

Classically allowed and classically forbidden regions...



Classically allowed and
classically forbidden regions




Classical harmonic oscillator in the complex plane

H = p?+ x? (e=0)
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Classical trajectory in

the complex-x plane
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Classical trajectories in
the complex-x plane
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Classical trajectories in
the complex-x plane
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Im(x)

Classical trajectories in
the complex-x plane

Re(x)



Probability density: Pelassical
Classical particle |
in the potential
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System with a static instability becomes dynamically stable
in the complex domain!




Bohr-Sommerfeld
Quantization of a complex atom

fazp=(n+ Y



Instability at x = 0 is tamed!

Complex analysis enables one to fame instabilities!

Physical systems that seem to be unstable
can become stable in the complex domain!




THE BASIC REASON:

If you extend real numbers to complex
numbers, you lose the ordering property
of real numbers

You lose the concept of > and <

Physical systems that look
unstable may not be!
(examples: bicycles, tops, ...)
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PT symmetry does not conflict with conventional
quantum theory, but it is weaker than Hermiticity:

All eigenvalues £ of a Hermitian Hamiltonian are real.
But for P7-symmetric Hamiltonians

only the secular equation det(H - IE) =0 is real.

For non-Hermitian P7-symmetric Hamiltonians, there
are TWO possibilities:
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Broken ParroT Unbroken ParroT

Complex spectrum Real spectrum



‘Hermitian Hamiltonians:
BORING!

Eigenvalues are always real — nothing interesting happens




PT-symmetric Hamiltonians:
ASTONISHING!

Transition between parametric regions of
broken and unbroken P7 symmetry --
can be observed experimentally!




Intuitive explanation of
the PT transition ...



Imagine a closed box with gain...
Hamiltonian for this system is
non-Hermitian: H = [a+ib]

IN

Box 1: Gain



Two noninteracting closed boxes,
one with gain, the other with loss:

IN .
a-+ib 0
H combined — 0

N
Box 1: Gain

Box 2: Loss

a — ib

This system is not in equilibrium



Couple the boxes:

a-+1ib ¢
Hﬂ:}uplcd — [ J ]

g a—1ib

Box 2: Loss

This Hamiltonian is non-Hermitian but P7 symmetric:

Time reversal: / = complex conjugation

Parity: P — [[1} é]



Real secular equation:

det (Hcc,up]gd — IE} = EE — 2alF + ﬂg T+ bg — gg

EiZHZ\/gE—bE

Transition at |g| = ||
Energy becomes REAL when |g| > |b|

This system is in equilibrium for sufficiently large coupling!



PT phase transition at the classical level

€= 1/2 Im(x)
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PT-symmetric systems lie between
closed and open systems

Hermitian H PT-symmetric H Non-Hermitian H




Theoretical applications: renormalizing makes
a Hamiltonian non-Hermitian, but still 77 symmetric

* Lee model is unitary (there are no ghosts!)
« Pais-Uhlenbeck model (no ghosts!)
* Self-force on the electron (runaway modes)
* Double-scaling limit in QFT
« Stability of the Higgs vacuum
« Asymptotic behavior of the Painlevé transcendents
« Application to the Riemann hypothesis
...and many many many many more!

Experimental Studies of P7 symmetry:

 PT-symmetric wave guides

e PT-symmetric lasers

 PT-symmetric electronic and mechanical systems

e Unidirectional transmission of light

e PT-symmetric atomic diffusion

e PT-symmetric superconducting wires

* PT-symmetric optical graphene and metamaterials
...and many many many many more!



PT—symmetric systems are being
observed experimentally!

First observation of P7 transition using
optical wave guides:

“Observation of PT-symmetry breaking in complex optical
potentials,” A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M.

Volatier-Ravat, V. Aimez, G. Siviloglou, and D. Christodoulides,
Physical Review Letters 103, 093902 (2009)



The PT adjoint and the C operator
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LETTERS

PUBUISHED ONLINE: 24 JANUARY 2010 | DOI:10.1038/NPHYS1515

Observation of parity-time symmetry in optics

Christian E. Riiter', Konstantinos G. Makris?, Ramy El-Ganainy?, Demetrios N. Christodoulides?,

Mordechai Segev® and Detlef Kip'*

One of the fundamental axioms of quantum mechanics is
associated with the Hermiticity of physical observables'. In
the case of the Hamiltonian operator, this requirement not
only implies real eigenenergies but also guarantees probability
conservation. Interestingly, a wide class of non-Hermitian
Hamiltonians can still show entirely real spectra. Among these
are Hamiltonians respecting parity-time (PT) symmetry®7.
Even though the Hermiticity of quantum observables was never
in doubt, such concepts have motivated discussions on several
fronts in physics, including quantum field theories®, non-
Hermitian Anderson models® and open quantum systems™",
to mention a few. Although the impact of PT symmetry in
these fields is still debated, it has been recently realized that
optics can provide a fertile ground where PT-related notions
can be implemented and experimentally investigated™ ™, In
this letter we report the first observation of the behaviour
of a PT optical coupled system that judiciously involves a
complex index potential. We observe both spontaneous PT
symmetry breaking and power oscillations violating left-right
symmetry. Our results may pave the way towards a new
class of PT-synthetic materials with intriguing and unexpected
properties that rely on non-reciprocal light propagation and
tailored transverse energy flow.

(& > £4), the spectrum ceases to be real and starts to involve
imaginary eigenvalues. This signifies the onset of a spontaneous PT
symmetry-breaking, that is, a “phase transition’ from the exact to
broken-PT phase™.

In optics, several physical processesare known to obey equations
that are formally equivalent to that of Schrodinger in quantum
mechanics. Spatial diffraction and temporal dispersion are perhaps
the most prominent examples. In this work we focus our attention
on the spatial domain, for example optical beam propagation
in PT-symmetric complex potentials. In fact, such PT “optical
potentials’ can be realized through a judicious inclusion of
index guiding and gain/loss regions™?-'*. Given that the complex
refractive-index distribution n(x) = ng(x)+in(x) plays the role of
an optical potential, we can then design a PT -symmetric system by
satisfying the conditions ng(x) =ngp(—x)and n (x) = —m( —x).

In other words, the refractive-index profile must be an even
function of position x whereas the gain/loss distribution should be
odd. Under these conditions, the electric-field envelope E of the
opticalbeam is governed by the paraxial equation of diffraction*:

dE 1 »°E
— 4 — —— K[ X) iy (x)]E=0
az 2k ax?
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PT-symmetric diffusion — Shanghai/Rutgers

PHYSICAL REVIEW A 81, 042903 (2010)

Enhanced magnetic resonance signal of spin-polarized Rb atoms near surfaces of coated cells

K. E Zhao,"" M. Schaden,? and Z. Wu?
Unstitute of Modern Physics, Fudan University, Shanghai 200433, People’s Republic of China
2Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
(Received 12 November 2009: published 21 April 2010)

We present a detailed experimental and theoretical study of edge enhancement in optically pumped Rb vapor in
coated cylindrical pyrex glass cells. The Zeeman polarization of Rb atoms is produced and probed in the vicinity
(~107* cm) of the cell surface by evanescent pump and probe beams. Spin-polarized Rb atoms diffuse throughout
the cell in the presence of magnetic field gradients. In the present experiment the edge enhanced signal from the
back surface of the cell is suppressed compared to that from the front surface. due to the fact that polarization
is probed by the evanescent wave at the front surface only. The observed magnetic resonance line shape is
reproduced quantitatively by a theoretical model and yields information about the dwell time and relaxation
probability of Rb atoms on Pyrex glass surfaces coated with antirelaxation coatings.

DOI: 10.1103/PhysRevA.81.042903 PACS number(s): 34.35.+a, 75.40.Gb, 76.70.Hb, 87.57.nt



PT-symmetric optics — Caltech

SCIENCE VOL 333 5 AUGUST 2011

Nonreciprocal Light Propagation in a
Silicon Photonic Circuit

Liang Feng,u""'f Maurice Ayache,’* Jingging Huang,™** Ye-Long Xu,? Ming-Hui Lu,?
Yan-Feng Chen,?t Yeshaiahu Fainman,® Axel Scherer™*t

Optical communications and computing require on-chip nonreciprocal light propagation to isolate
and stabilize different chip-scale optical components. We have designed and fabricated a
metallic-silicon waveguide system in which the optical potential is modulated along the length
of the waveguide such that nonredprocl light propagation is obtained on a silicon photonic
chip. Nonreciprocal light transport and one-way photonic mode conversion are demonstrated at
the wavelength of 1.55 micrometers in both simulations and experiments. Our system is
compatible with conventional complementary metal-oxide-semiconductor processing, providing a
way to chip-scale optical isolators for optical communications and computing.

‘Department of Bledrical Engineering, California Institute of
Technology, Pasadena, CA 91125, USA. “Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing,
Jiangsu 210093, China. *Department of Electrial and Com-
puter Engineering, University of Califorma, San Diego, La Jolla,
CA 92093, USA. *Kavli Nanoscience Institute, California Insti-
tute of Technology, Pasadena, CA 91125, USA.



PT-symmetric superconducting wires — Indiana

PRL 99, 167003 (2007)

PHYSICAL REVIEW LETTERS

week ending
19 OCTOBER 2007

Bifurcation Diagram and Pattern Formation of Phase Slip Centers

J. Rubinstein, P. Sternberg, and Q. Ma

in Superconducting Wires Driven with Electric Currents

Mathematics Department, Indiana University, Bloomington, Indiana 47405, USA

(Received 14 February 2007: published I8 October 2007)

We provide here new insights into the classical problem of a one-dimensional superconducting wire
exposed to an applied electric current using the time-dependent Ginzburg-Landau model. The most
striking feature of this system is the well-known appearance of oscillatory solutions exhibiting phase slip
centers (PSC’s) where the order parameter vanishes. Retaining temperature and applied current as
parameters, we present a simple yet definitive explanation of the mechanism within this nonlinear model
that leads to the PSC phenomenon and we establish where in parameter space these oscillatory solutions
can be found. One of the most interesting features of the analysis is the evident collision of real
eigenvalues of the associated PT-symmetric linearization, leading as it does to the emergence of complex

elements of the spectrum.
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PT-symmetric microwave cavities — Germany

week ending

PRL 108, 024101 (2012) PHYSICAL REVIEW LETTERS 13 JANUARY 2012

PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard

S. Bittner,' B. Dietz,"* U. Giinther,” H. L. Harney,” M. Miski-Oglu," A. Richter,'"" and F. Schifer'”
'Institut fiir Kernphysik, Technische Universitit Darmstadi, D-64289 Darmstadt, Germany
*Helmholtz-Zentrum Dresden-Rossendorf, Postfach 510119, D-013 14 Dresden, Germany
*Max-Planck-Institut fiir Kernphysik, D-69029 Heidelberg, Germany
*ECT*, Villa Tambosi, I-38123 Villazzano (Trento), Italy
SLENS, University of Florence, 1-50019 Sesto-Fiorentino (Firenze), Italy
(Received 21 July 2011; published 10 January 2012)

We demonstrate the presence of parity-ime (P7) symmetry for the non-Hermitian two-state
Hamiltonian of a dissipative microwave billiard in the vicinity of an exceptional point (EP). The shape
of the billiard depends on two parameters. The Hamiltonian is determined from the measured resonance
spectrum on a fine grid in the parameter plane. After applying a purely imaginary diagonal shift to the
Hamiltonian, its eigenvalues are either real or complex conjugate on a curve, which passes through the EP.
An appropriate basis choice reveals its P7 symmetry. Spontaneous symmetry breaking occurs at the EP.

DOI: 10.1103/PhysRevLett.108.024101 PACS numbers: 0545M¢t, 02.10.Yn, 11L.30.Er



PT-symmetric cavity lasers — Yale

week ending

PRL 106, 093902 (2011) PHYSICAL REVIEW LETTERS 4 MARCH 2011

PT -Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems

Y.D. Chong.* Li Ge,” and A. Douglas Stone

Department of Applied Physics, Yale University, New Haven, Connecticut 06520, UUSA
(Received 30 August 2010; revised manuscript received 27 January 2011; published 2 March 2011)

Using a scattering matrix formalism, we derive the general scattering properties of optical structures
that are symmetric under a combination of parity and time reversal { PT ). We demonstrate the existence
of a transition between P7T -symmeiric scattering eigenstates, which are norm preserving, and symmetry-
broken pairs of eigenstates exhibiting net amplification and loss. The sysiem proposed by Longhi
[Phys. Rev. A 82, 031801 (2010).], which can act simultaneously as a laser and coherent perfect absorber,
occurs at discrete points in the broken-symmetry phase, when a pole and zero of the § matrix coincide.

DOT: 10.1103/PhysRevLett. 106.093902 PACS mumbers: 42.25Bs. 42.25Hz, 4255 Ah



PT-symmetric photonic graphene — Israel

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 84, 021806(R) (2011)

er-symmeftry in honeycomb photonic lattices

Alexander Szameit, Mikael C. Rechtsman, Omri Bahat-Treidel, and Mordechai Segev
Physics Department and Solid State Institute, Technion, 32000 Haifa, Israel
(Received 21 April 201 1; published 19 August 2011)

We apply gain and loss to honeycomb photonic lattices and show that the dispersion relation is identical
to tachyons—particles with imaginary mass that travel faster than the speed of light. This is accompanied by
PT-symmetry breaking in this structure. We further show that the #*T-symmetry can be restored by deforming
the lattice.

DOI: 10.1103/PhysRevA.84.021806 PACS number(s): 42.25.—p. 42.82.Et



PT lasers — Vienna/Princeton/Yale/Zurich

week endin

PRL 108, 173901 (2012) PHYSICAL REVIEW LETTERS 27 APRIL, 2012

Pump-Induced Exceptional Points in Lasers

M. Liertzer,"* Li Ge,> A. Cerjan,” A. D. Stone,” H. E. Tiireci,”* and S. Rotter""
nstitute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria, EU
’Depal tment of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

Depamnent of Applied Physics, Yale University, New Haven, Connecticut 06520, USA

*Institute for Quantum Electronics, ETH-Ziirich, CH-8093 Ziirich, Switzerland
(Received 2 September 2011; revised manuscript received 20 January 2012; published 24 April 2012)

We demonstrate that the above-threshold behavior of a laser can be strongly affected by exceptional
points which are induced by pumping the laser nonuniformly. At these singularities, the eigenstates of the
non-Hermitian operator which describes the lasing modes coalesce. In their vicinity, the laser may turn off
even when the overall pump power deposited in the system is increased. Such signatures of a pump-
induced exceptional point can be experimentally probed with coupled ridge or microdisk lasers.



Multiple P7-symmetric waveguides — Germany/Florida

ARTICLE

doi:10.1038/nature1 1298

Parity-time synthetic photonic lattices

Alois Regensburger'?, Christoph Bersch'?, Mohammad - Ali Miri®, Georgy Onishchukov?, Demetrios N. Christodoulides®
& UIf Peschel’

The development of new artificial structures and materials is today one of the major research challenges in optics. In most
studies so far, the design of such structures has been based on the judicious manipulation of their refractive index
properties. Recently, the prospect of simultaneously using gain and loss was suggested as a new way of achieving optical
behaviour that is at present unattainable with standard arrangements. What facilitated these quests is the recently
developed notion of ‘parity-time symmetry’ in optical systems, which allows a controlled interplay between gain and
loss. Here we report the experimental observation of light transport in large-scale temporal lattices that are parity-time
symmetric. In addition, we demonstrate that periodic structures respecting this symmetry can act as unidirectional
invisible media when operated near their exceptional points. Our experimental results represent a step in the
application of concepts from parity -time symmetry to a new generation of multifunctional optical devices and networks.



PT-symmetric superconducting wires — Argonne

PRL 109, 150405 (2012) PHYSICAL REVIEW LETTERS 12 OCTORER 012

Stimulation of the Fluctuation Superconductivity by P77 Symmetry

N. M. Chtchelkatchev."* A. A. Golubov.” T.I. Baturina.*” and V.M. Vinokur"

'Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow region, Russia
*Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow, Russia
*Faculty of Science and Technology and MESA+ Institute of Nanotechnology, University of Twente, Enschede, The Netherlands
*Materials Science Division, Argonne National Laboratory, Argonne, Illlinois 60439, USA

3A. V. Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk, 630090 Russia
(Received 6 May 2012; published 9 October 2012)

We discuss fluctuations near the second-order phase transition where the free energy has an additional
non-Hermmitian term. The spectrum of the fluctuations changes when the odd-parity potential amplitude
exceeds the critical value corresponding to the P7 -symmetry breakdown in the topological structure of
the Hilbert space of the effective non-Hermitian Hamiltonian. We calculate the fluctuation contribution to
the differential resistance of a superconducting weak link and find the manifestation of the T -symmetry
breaking in its temperature evolution. We successfully validate our theory by carrying out measurements
of far from equilibrium transport in mesoscale-patterned superconducting wires.

DOI: 10.1103/PhysRevLett.109.150405 PACS numbers: 11.30.Er, 03.65.Ge. 73.63.-b



PT-symmetric NMR — Beijing

PHILOSOPHICAL
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One contribution of 17 to a Theme lssue
“PT quantum mechanics.

Observation of a fast evolution
In a parity-time-symmetric
system

Chao Zheng', Liang Hao' and Gui Lu Long'

IState Key Laboratory of Low-dimensional Quantum Physics and
Department of Physics, Tsinghua University, Beijing 100084,
People’s Republic of China

?Tsinghua National Laboratory for Information Science and
Technology, Beijing 100084, People’s Republic of China

In parity-time-symmetric (PT-symmetric) Hamilt-
onian theory, the optimal evolution time can be
reduced drastically and can even be zero. In this
article, we report our experimental simulation of
the fast evolution of a PT-symmetric Hamiltonian
in a nuclear magnetic resonance quantum system.
The experimental results demonstrate that the P7-
symmetric Hamiltonian system can indeed evolve
much faster than the quantum system, and the
evolution time can be arbitrarily close to zero.



APS: Spotlighting exceptional research E . @
J. Schindler et al., Phys. Rev. A (2011) L
Experimental study of active LRC circuits with PT symmetries
Joseph Schindler, Ang Li, Mei C. Zheng, F. M. Ellis, and Tsampikos Kottos

Phys. Rev. A 84, 040101 (2011)
Published October 13, 2011

Everyone learns in a first course on quantum mechanics that the result of a measurement cannot be a complex
number, so the quantum mechanical operator that corresponds to a measurement must be Hermitian. However,
certain classes of complex Hamiltonians that are not Hermitian can still have real eigenvalues. The key property
of these Hamiltonians is that they are parity-time (PT) symmetric, that is, they are invariant under a mirror
reflection and complex conjugation (which is equivalent to time reversal).

Hamiltonians that have PT symmetry have been used to describe the depinning of vortex flux lines in type-Il
superconductors and optical effects that involve a complex index of refraction, but there has never been a simple
physical system where the effects of PT symmetry can be clearly understood and explored. Now, Joseph Schindler
and colleagues at Wesleyan University in Connecticut have devised a simple LRC electrical circuit that displays
directly the effects of PT symmetry. The key components are a pair of coupled resonant circuits, one with active
gain and the other with an equivalent amount of loss. Schindler et al. explore the eigenfrequencies of this system
as a function of the “gain/loss” parameter that controls the degree of amplification and attenuation of the system.
For a critical value of this parameter, the eigenfrequencies undergo a spontaneous phase transition from real to
complex values, while the eigenstates coalesce and acquire a definite chirality (handedness). This simple electronic
analog to a quantum Hamiltonian could be a useful reference point for studying more complex applications.

— Gordon W. F. Drake



“Observation of PT phase transition in a simple mechanical system,”
CMB, B. Berntson, D. Parker, E. Samuel, American Journal of Physics 81, 173 (2013)




PT-symmetric system of coupled pendula

~

" (t) + ax'(t) + z(t) +cy(t) = 0
y'(t) —ay'(t) + y(t) +cx(t) = 0

Loss and gain:
Remove energy from the x pendulum
and transfer it to the y pendulum.



Recent fancy experiments involving whispering-galery microcavities

“Nonreciprocal light transmission in parity-time-symmetric
whispering-gallery microcavities,” B. Peng, S. K. Ozdemir, F. Lei,
F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, CMB, L. Yang,
Nature Physics 10, 394 (2014)

“Twofold transition in PT-symmetric coupled oscillators,”
CMB, M. Gianfreda, B. Peng, S. K. Ozdemir, and L. Yang,
Physical Review A 88, 062111 (2013)

“Loss-induced suppression and revival of lasing,”
B. Peng, S.K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, CMB, F. Nori, L. Yang,
Science 346, 328 (2014)




PT-symmetric wireless power transter — Stanford

LETTER

do0i:10.1038/nature22404

Robust wireless power transfer using a nonlinear
parity-time-symmetric circuit

Sid Assawaworrarit!, Xiaofang Yu! & Shanhui Fan!

Considerable progress in wireless power transfer has been made in
the realm of non-radiative transfer, which employs magnetic-field
coupling in the near field'-*. A combination of circuit resonance
and impedance transformation is often used to help to achieve
efficient transfer of power over a predetermined distance of about
the size of the resonators®*. The development of non-radiative
wireless power transfer has paved the way towards real-world
applications such as wireless powering of implantable medical
devices and wireless charging of stationary electric vehicles">*%,
However, it remains a fundamental challenge to create a wireless
power transfer system in which the transfer efficiency is robust
against the variation of operating conditions. Here we propose
theoretically and demonstrate experimentally that a parity-time-
symmetric circuit incorporating a nonlinear gain saturation element
provides robust wireless power transfer. Our results show that the
transfer efficiency remains near unity over a distance variation of
approximately one metre, without the need for any tuning. This is in
contrast with conventional methods where high transfer efficiency
can only be maintained by constantly tuning the frequency or the
internal coupling parameters as the transfer distance or the relative
orientation of the source and receiver units is varied. The use of
a nonlinear parity-time-symmetric circuit should enable robust
wireless power transfer to moving devices or vehicles*'°.
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Theoretical examples:
Lee model

V— N + 0, N +60—>YV.
H=Hﬂ+gﬂH1:

Hy, = mVOV‘LV +myNTN + mya'a,
H, = VINa+a' NV,

T. D. Lee, Phys. Rev. 95, 1329 (1954)
G. Kallén and W. Pauli, Dan. Mat. Fys. Medd. 30, No. 7 (1955)



g/ 0=

Problem with the Lee model




“A non-Hermitian Hamiltonian is unacceptable
partly because it may lead to complex energy
eigenvalues, but chiefly because it implies a non-
unitary S matrix, which fails to conserve probability
and makes a hash of the physical interpretation.”

G. Barton, Introduction to Advanced Field Theory (John Wiley & Sons, New York, 1963)

Renormalization creates instability.
This is a really hard problem. Pauli, Heisenberg,
Wick, Sudarshan, ... worked on it, but no cigar.



GHOSTBUSTING: Reviving
quantum theories that were

thought to be dead

“Ghost busting: PT-symmetric interpretation of the Lee model,”
CMB, S. Brandt, J.-H. Chen, and Q. Wang, Phys. Rev. D 71, 025014 (2005)



PT symmetry and instabilities of
nonlinear differential equations

Painlevé transcendents have fundamental instabilities
that can be tamed and understood quantitatively by
using P7-symmetric quantum theory

“Nonlinear eigenvalue problems,”
CMB, A. Fring, and J. Komijani,
Journal of Physics A: Mathematical and Theoretical 47, 235204 (2014)

“PT-symmetric Hamiltonians and the Painlevé transcendents,”
CMB and J. Komijani,
Journal of Physics A: Mathematical and Theoretical 48, 475202 (2015)

“Nonlinear eigenvalue problems”

CMB, J. Komijani, and Q. Wang,

In Resurgence, Physics and Numbers, ed. by F. Fauvet, D. Manchon, S. Marmi, and D. Sauzin
CRM (Centro di Ricerca Matematica) Series, Ennio De Giorgi 20, 67-89 (2017)



Asymptotics beyond all orders

Leading asymptotic behavior of solutions to

—"(z) + V(z)¢(z) = EY(z)

for large positive x:

U(z) ~C[V(z) — E J_]*"" exp [ /

NOTE: There is only O/VE arbitrary constant.

I

ds \ Vis)— FE ] (r — o0)

Second arbitrary constant is invisible with Poincaré asymptotics
because it is contained in the subdominant solution:

T

U(z) ~ D[V (z) — E] /Y exp {— / ds\/V (s) — E] (z — o0)

Physical solution is Unstable under small changes in E.



Eigenfunctions: 3 characteristic properties

(1) Oscillatory in classically allowed region (nth
eigenfunction has » nodes)

(2) Monotone decay in classically forbidden region

(3) Transition at the boundary (furning point)



Toy nonlinear eigenvalue problem

y'(z) = cos|rzy(z)], y(0)=a

Some references:
(1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw
Hill, New York, 1978), chap. 4.
2] C. M. Bender, D. W. Hook, P. N. Meisinger, and Q. Wang, Phys. Rev. Lett. 104, 061601 (2010).
3] C. M. Bender, D. W. Hook, P. N. Meisinger, and (). Wang, Ann. Phys. 325, 2332-2362 (2010).
4] J. Gair, N. Yunes, and C. M. Bender, J. Math. Phys. 53, 032503 (2012).






Asymptotic behavior for large x

m+ 1/2

I

Solution behaves like:  y(x) ~

m=0,1,2,3,...is an integer



There s a blg problem here...
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Furthermore, no arbitrary constant appears
in the asymptotic behavior!!




Where is the arbitrary constant?!?
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Higher-order asymptotic behavior for large x
still contains no arbitrary constant!

m+ 1/2 Ch
y(l ™~ . ' Ok+1 (1 — X)
T T2
k=1
( )m | ,
g = ——(m+1/2)
co = —(m+1/2)
cq = (—1)™ (m+1/2)*  15(m+1/2)
A 6 7.'3
8(m + 1/2)3 105(m +1/2)
Cq4 = —5 4
3= o
s = (—1)™ 3(m + 12)5 N 36(m + 1/2)3 N 945(m :+— 1/2) |
407 7(3 T
38(m+1/2)°  498(m +1/2)°  10395(m +1/2)
%6 = : 5 + - + - —.
157= d 6




Asymptotics beyond all orders

Difference of two solutions in one bundle: Y (z) = y;(z) — yo(x)

Y'(z) = cos[rzyi(z)] — cos[mzys(z)]
= —2sin [ Txyi(x) + )"1 Yo (2 )] sin “7[’1"}_/1(1’) — %WJ'yQ(;T:)]
~ —2sin |7 (m+ 5 ):\lll[ mzY (z)]  (z — o0)
~ —(=1)"mzY () (xz — o0).

Y(z) ~ Kexp [—(.—11)’”7";1‘2} (r — o0)

Aha! K is the invisible arbitrary constant!
Odd-m solutions are unstable;
even-m solutions are stable.
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: ;
y(0) = a € {1.6026,2.3884,2.9767, 3.4675, 3.8975, 4.2847, ...}

Eigenvalues correspond to odd-m initial values.
Eigenfunctions are (unstable) separatrices, which
begin at eigenvalues.




We calculated up to m=500,001

Let m =2n—1

For large n the nth eigenvalue grows like the square root
of n times a constant 4, and we used Richardson
extrapolation to show that

A=1.7817974363... -

and then we guessed A. "




Result:

This is a rather nontrivial problem...



Analytic calculation of the constant A

Construct moments of z(¢):

k41

S

z(s)]*

Moments are associated with a semi-infinite
linear one-dimensional random walk in which
random walkers become static as they reach n=1

200 + g1 =0, 20p + 01 g1 +op1k-1=0 (n=3).

(
Apr(t) E/ ds cos[nAsz(s)]
0

290 p + g 1 = 0,

* /e
Solve the random walk problem exactly and get A = 2°/°
A A
o @ CMB, A. Fring, and J. Komijani

J. Phys. A: Math. Theor. 47, 235204 (2014)
[arXiv: math-ph/1401.6161]




Possible connection with
the power series constant P???

(Remember the numerical constant 4 = 1.7818)

W. K. Hayman, Research Problems in Function theory
[Athlone Press (University of London), London, 1967]

J. Clunie and P. Erdos, Proc. Roy. Irish Acad. 65, 113 (1967).
J. D. Buckholtz, Michigan Math. J. 15, 481 (1968).



Three nontrivial second-order
nonlinear eigenvalue problems

separatrix



d*y

Painleve | —7 =6y’ +t
. , d*y 3
Painleve Il — =2 +ty+a
: . 2 dy\® d
Painleve lli y?i/:t(d—f) —yd—f+6t+,ﬁy+ay3+ﬁrty“
: , dy _ (dy\’ ) 3,34
Painleve IV y7=5(5) +8+2(8 — o) + 4ty + 3y

. , 2 2
Painlevé V 2y _ (i+ L ) (d—y) Y

12 2y y-—1 dt tdt
(y — 1) 3 y  yly+1)
) RIVE ANy
t2 “ +y * t+ y—1
. . Py (1 1 1 dy\> (1 1 1\ dy
Painlevé VI ?‘5(§+y_1+y_t)(a -Gttt ) @

yy-Dy-t) (  ,t t-1 t(t—1)
t2(t — 1)2 (a+"3y2+ '(y—1)2+5(y—t)2)



(1) First Painlevé transcendent

Solution y(x) must choose between two possible
asymptotic behaviors as x gets large and negative:

++y/—t/6or —/—t/6



Example of a difficult choice ...




Two possible asymptotic behaviors

Lower square-root branch is stable:

P ——

R / . \—1/8
y(z) ~ —vV—z 4+ c(—2) " cos |

e

V2(—2)*t +d] (2 — —o)

Upper square-root branch is unstable:

pr—

/ \ / v —1 b ;. /f_.—. ) " . _ o
ylr) ~vV—r+ce(—z2) /" exp [i%\, 2(—x)” 1] (r — —0o0)



Two possible Kinds of solutions (NOT eigenfunctions):

Unstable branch

Stable branch

Unstable branch

Stable branch




_4 1 1 | 1 1 1 1 1 1 1 1
-5 -7 -8 -5 -4 -3 -2 -1 0 -10 -2 8 —4 -2 D
t

First two separatrix solutions (eigenfunctions) of Painlevé I with initial condition y(0) = 0. Left
panel: y'(0) = by = 1.851854034; right panel: 3'(0) = by = 3.004031103. The dashed curves are y =
+./—t/6.



t |
Third and fourth eigenfunctions of Painlevé I with initial condition y(0) = 0. Left panel: 3'(0) =

by = 3.905175320; right panel: y'(0) = by = 4.683412410.



-4 —4
-20 -15 -10 -5 o -20 -15 -10 -5 0

Tenth and eleventh eipgenfunctions of Painlevé [ with initial condition y(0) = 0. Left panel: ¢'(0) =
bip = 8.244932302: right panel: ¢'(0) = by, = 8.738330156. Note that as n increases, the eigenfunctions pass
through more and more double poles before exhibiting a turning-point-like transition and approaching the
limiting curve 4,/ —t/6 exponentially rapidly. This behavior is analogous to that of the eigenfunctions of
a time-independent Schrodinger equation for a particle in a potential well; the higher-energy eigenfunctions
exhibit more and more oscillations in the classically allowed region before entering the classically forbidden
region. where they decay exponentially.



For large n:

y (0)=b, ~ Bn3>

Fifth-order Richardson applied to first 11 eigenvalues:
B,=2.09214674

Can you guess this number?

y.(0)=c, ~ Cin?>

Fourth-order Richardson applied to first 15 eigenvalues:

| =-1.0304844

Can you guess this number?




3/5

Bi=2 [Varr (4) /1 ()]

/5
Cr =~ |V3aT (&) /T (3)]




Instability of Painlevé I explained from large eigenvalues of

cubic PT-symmetric Hamiltonian

H= p2 + ix3 Painlevé I corresponds to € = 1

(Do you remember the
cubic P7-symmetric
Hamiltonian?!)




Instability of Painleve II explained from large eigenvalues of

quartic P1-symmetric Hamiltonian

H= p2 —x* Painlevé II corresponds to € =2

(Do you remember the
quartic upside-down
PT-symmetric Hamiltonian?!)




Instability of Painleve IV explained in terms of the

sextic P1-symmetric Hamiltonian

H= p2 + x50 Painlevé IV corresponds to € =4

(Do you remember the
sextic P7T-symmetric
Hamiltonian?!)




In general, this analysis works for huge
classes of equations beyond Painlevé.
For example:




This is a new area of nonlinear
semiclassical asymptotic analysis!
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I hope you enjoyed this course!



