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DID WE PROVE THAT THE 
EIGENVALUES ARE REAL? 
 

NO!! 
 
Why not?? 



Stability of upside-down potentials 

This upside-down potential looks unstable (on the real axis) 
 
Complex variables explains why it has quantum bound states 
 

V(x) = –x4 



To begin, we extend simple 
classical harmonic motion 
to the complex domain… 



Classical harmonic oscillator 

 
             Turning point Turning point 

Back and forth motion on the real-x axis: 

Classically allowed and classically forbidden regions… 

E = p2 + x2  



Classically allowed and 
classically forbidden regions 



Classical harmonic oscillator in the complex plane  

 
             

Turning point Turning point 

H = p2 + x2  

Classical trajectory in 
the complex-x plane 

(ε = 0) 

E = p2 + x2  



(ε = 1) Classical trajectories in 
the complex-x plane 
 

H = p2 + ix3  



(ε = 2) Classical trajectories in 
the complex-x plane 
 

H = p2 – x4  



Classical trajectories in 
the complex-x plane 



Probability density: 
Classical particle 
in the potential 
 
 
on the real-x axis 

V(x) = -x4 



System with a static instability becomes dynamically stable 
in the complex domain!  



π



Instability at x = 0 is tamed! 

Complex analysis enables one to tame instabilities! 
 
 
Physical systems that seem to be unstable 
can become stable in the complex domain! 



THE BASIC REASON: 
 
If you extend real numbers to complex 
numbers, you lose the ordering property 
of real numbers 
 
You lose the concept of > and < 
 
 
 
Physical systems that look 
unstable may not be! 
(examples: bicycles, tops, …) 



PT Boundary 
Region of unbroken 
PT symmetry 

Region of broken 
PT symmetry 

Transition 
 at ε = 0 



PT symmetry does not conflict with conventional 
quantum theory, but it is weaker than Hermiticity: 
All eigenvalues E of a Hermitian Hamiltonian are real. 
But for PT-symmetric Hamiltonians 
only the secular equation   det(H - IE) = 0   is real.  
 
For non-Hermitian PT-symmetric Hamiltonians, there 
are TWO possibilities: 
 
PT-symmetric theories may have an all real or a partly 
real and partly complex spectrum.  



Broken ParroT 
Complex spectrum 

Unbroken ParroT 
Real spectrum 



Hermitian Hamiltonians: 
 BORING! 

Eigenvalues are always real – nothing interesting happens 



PT-symmetric Hamiltonians: 
ASTONISHING! 

Transition between parametric regions of 
broken and unbroken PT symmetry -- 
can be observed experimentally! 



Intuitive explanation of 
the PT transition … 



Imagine a closed box with gain…  
Hamiltonian for this system is 
non-Hermitian:  H = [a+ib]  

Box 1: Gain 



Two noninteracting closed boxes,  
one with gain, the other with loss: 

Box 2: Loss 

This system is not in equilibrium 

Box 1: Gain 



     Couple the boxes: 

Box 2: Loss 

This Hamiltonian is non-Hermitian but PT symmetric: 

Box 1: Gain 

Time reversal:       = complex conjugation 
 
Parity:   



Real secular equation: 

Transition at |g| = |b| 
Energy becomes REAL when |g| > |b| 

This system is in equilibrium for sufficiently large coupling! 



ε = 1/2 

PT phase transition at the classical level 



Broken PT symmetry – orbit not closed 

ε< 0 



      PT-symmetric systems lie between 
      closed and open systems 

Hermitian H Non-Hermitian H PT-symmetric H 



Theoretical applications: renormalizing makes 
a Hamiltonian non-Hermitian, but still PT symmetric 

•  Lee model is unitary (there are no ghosts!) 
•  Pais-Uhlenbeck model (no ghosts!) 
•  Self-force on the electron (runaway modes) 
•  Double-scaling limit in QFT 
•  Stability of the Higgs vacuum 
•  Asymptotic behavior of the Painlevé  transcendents 
•  Application to the Riemann hypothesis 
           …and many many many many more! 

Experimental Studies of PT symmetry: 
•  PT-symmetric wave guides 
•  PT-symmetric lasers 
•  PT-symmetric electronic and mechanical systems 
•  Unidirectional transmission of light 
•  PT-symmetric atomic diffusion 
•  PT-symmetric superconducting wires 
•  PT-symmetric optical graphene and metamaterials 
           …and many many many many more! 



PT–symmetric systems are being 
observed experimentally! 

First observation of PT transition using 
optical wave guides: 

“Observation of PT-symmetry breaking in complex optical 
potentials,” A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. 
Volatier-Ravat, V. Aimez, G. Siviloglou, and D. Christodoulides, 
Physical Review Letters 103, 093902 (2009) 



The PT adjoint and the C operator  





PT-symmetric diffusion – Shanghai/Rutgers 



PT-symmetric optics – Caltech 



PT-symmetric superconducting wires – Indiana 



PT-symmetric microwave cavities – Germany 



PT-symmetric cavity lasers – Yale 



PT-symmetric photonic graphene – Israel 



PT lasers – Vienna/Princeton/Yale/Zurich 



Multiple PT-symmetric waveguides – Germany/Florida 



PT-symmetric superconducting wires – Argonne 



PT-symmetric NMR – Beijing 



J. Schindler et al., Phys. Rev. A (2011) 
Experimental study of active LRC circuits with PT symmetries 
Joseph Schindler, Ang Li, Mei C. Zheng, F. M. Ellis, and Tsampikos Kottos 
Phys. Rev. A 84, 040101 (2011) 
Published October 13, 2011 
Everyone learns in a first course on quantum mechanics that the result of a measurement cannot be a complex 
number, so the quantum mechanical operator that corresponds to a measurement must be Hermitian. However, 
certain classes of complex Hamiltonians that are not Hermitian can still have real eigenvalues. The key property 
of these Hamiltonians is that they are parity-time (PT) symmetric, that is, they are invariant under a mirror 
reflection and complex conjugation (which is equivalent to time reversal). 
 
Hamiltonians that have PT symmetry have been used to describe the depinning of vortex flux lines in type-II 
superconductors and optical effects that involve a complex index of refraction, but there has never been a simple 
physical system where the effects of PT symmetry can be clearly understood and explored. Now, Joseph Schindler 
and colleagues at Wesleyan University in Connecticut have devised a simple LRC electrical circuit that displays 
directly the effects of PT symmetry. The key components are a pair of coupled resonant circuits, one with active 
gain and the other with an equivalent amount of loss. Schindler et al. explore the eigenfrequencies of this system 
as a function of the “gain/loss” parameter that controls the degree of amplification and attenuation of the system. 
For a critical value of this parameter, the eigenfrequencies undergo a spontaneous phase transition from real to 
complex values, while the eigenstates coalesce and acquire a definite chirality (handedness). This simple electronic 
analog to a quantum Hamiltonian could be a useful reference point for studying more complex applications.  
– Gordon W. F. Drake 

APS: Spotlighting exceptional research 



“Observation of PT phase transition in a simple mechanical system,” 
CMB, B. Berntson, D. Parker, E. Samuel, American Journal of Physics 81, 173 (2013)  



Loss and gain:  
Remove energy from the x pendulum 
and transfer it to the y pendulum. 

PT-symmetric system of coupled pendula 



“Nonreciprocal light transmission in parity-time-symmetric 
whispering-gallery microcavities,” B. Peng, S. K. Ozdemir, F. Lei, 
F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, CMB, L. Yang, 
Nature Physics 10, 394 (2014)  
 
“Twofold transition in PT-symmetric coupled oscillators,” 
CMB, M. Gianfreda, B. Peng, S. K. Ozdemir, and L. Yang, 
Physical Review A 88, 062111 (2013)  
 
“Loss-induced suppression and revival of lasing,” 
B. Peng, S.K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, CMB, F. Nori, L. Yang, 
Science 346, 328 (2014)  

Recent fancy experiments involving whispering-galery microcavities 



PT-symmetric wireless power transfer – Stanford 



Overview of 
this course: 



Theoretical examples:  
Lee model 



Problem with the Lee model 



“A non-Hermitian Hamiltonian is unacceptable 
partly because it may lead to complex energy 
eigenvalues, but chiefly because it implies a non-
unitary S matrix, which fails to conserve probability 
and makes a hash of the physical interpretation.” 

Renormalization creates instability. 
This is a really hard problem. Pauli, Heisenberg, 
Wick, Sudarshan, … worked on it, but no cigar. 



GHOSTBUSTING: Reviving 
quantum theories that were 
thought to be dead 
 

“Ghost busting: PT-symmetric interpretation of the Lee model,” 
CMB, S. Brandt, J.-H. Chen, and Q. Wang, Phys. Rev. D 71, 025014 (2005)  



PT symmetry and instabilities of 
nonlinear differential equations 

Painlevé transcendents have fundamental instabilities 
that can be tamed and understood quantitatively by 
using PT-symmetric quantum theory 
 
“Nonlinear eigenvalue problems,” 
CMB, A. Fring, and J. Komijani, 
Journal of Physics A: Mathematical and Theoretical 47, 235204 (2014) 
 
“PT-symmetric Hamiltonians and the Painlevé transcendents,” 
CMB and J. Komijani, 
Journal of Physics A: Mathematical and Theoretical 48, 475202 (2015) 
 
“Nonlinear eigenvalue problems” 
CMB, J. Komijani, and Q. Wang, 
In Resurgence, Physics and Numbers, ed. by F. Fauvet, D. Manchon, S. Marmi, and D. Sauzin 
CRM (Centro di Ricerca Matematica) Series, Ennio De Giorgi 20, 67-89 (2017) 
 
 
 
 



Asymptotics beyond all orders 
Leading asymptotic behavior of solutions to 
 
 
for large positive x: 

NOTE: There is only ONE arbitrary constant. 
 
Second arbitrary constant is invisible with Poincaré asymptotics 
because it is contained in the subdominant solution: 
 
 
 
Physical solution is Unstable under small changes in E. 



Eigenfunctions: 3 characteristic properties 

(1) Oscillatory in classically allowed region (nth  
      eigenfunction has n nodes) 
 
(2) Monotone decay in classically forbidden region 
 
(3) Transition at the boundary (turning point) 



Toy nonlinear eigenvalue problem 

Some references: 



Solutions for 50 initial conditions 
   Note: (1) oscillation    (2) monotone decay    (3) transition 



Asymptotic behavior for large x 

Solution behaves like: 

m = 0, 1, 2, 3, ... is an integer 



There’s a big problem here... 

m = 2 
m = 4 
m = 6 
m = 8 

m = 0 

m = 10 

Where are the odd-m solutions?!?  



Furthermore, no arbitrary constant appears 
in the asymptotic behavior!! 



Where is the arbitrary constant?!? 

Is it in higher order? 



Higher-order asymptotic behavior for large x 
still contains no arbitrary constant! 



Asymptotics beyond all orders 

Aha! K is the invisible arbitrary constant! 
Odd-m solutions are unstable;  
even-m solutions are stable. 

Difference of two solutions in one bundle: 



m = 9 

m = 5 

m = 1 

m = 7 

m = 3 

Eigenvalues correspond to odd-m initial values.  
Eigenfunctions are (unstable) separatrices, which 
begin at eigenvalues. 



We calculated up to m=500,001 

For large n the nth eigenvalue grows like the square root 
of n times a constant A, and we used Richardson  
extrapolation to show that 
           
                A= 1.7817974363... 
 
and then we guessed A. 

Let 



Result: 

This is a rather nontrivial problem... 



Analytic calculation of the constant A 

Construct moments of z(t): 

Moments are associated with a semi-infinite 
linear one-dimensional random walk in which 
random walkers become static as they reach n=1  

CMB, A. Fring, and J. Komijani 
J. Phys. A: Math. Theor. 47, 235204 (2014) 
[arXiv: math-ph/1401.6161] 

Solve the random walk problem exactly and get 



Possible connection with 
the power series constant P??? 

W. K. Hayman, Research Problems in Function theory 
 [Athlone Press (University of London), London, 1967] 

(Remember the numerical constant A = 1.7818) 



Three nontrivial second-order 
nonlinear eigenvalue problems 

separatrix 



Painlevé I 
 
Painlevé II 
 
Painlevé III 
 
Painlevé IV 
 
 
Painlevé V 
 
 
 
Painlevé VI 
 
 



Solution y(x) must choose between two possible 
asymptotic behaviors as x gets large and negative: 

(1) First Painlevé transcendent 



Example of a difficult choice ... 



Two possible asymptotic behaviors 

Lower square-root branch is stable: 

Upper square-root branch is unstable: 



Two possible kinds of solutions (NOT eigenfunctions): 

Stable branch 

Unstable branch 

Unstable branch 

Stable branch 









Fifth-order Richardson applied to first 11 eigenvalues: 

Fourth-order Richardson applied to first 15 eigenvalues: 

y’n(0) = bn ~ BIn3/5    

yn(0) = cn ~ CIn2/5    

For large n: 

BI = 2.09214674 

CI = -1.0304844 

Can you guess this number? 

Can you guess this number? 





Instability of Painlevé I explained from large eigenvalues of  

cubic PT-symmetric Hamiltonian 

(Do you remember the 
cubic PT-symmetric  
Hamiltonian?!) 

Painlevé I corresponds to ε = 1 H = p2 + ix3  



Instability of Painlevé II explained from large eigenvalues of 
quartic PT-symmetric Hamiltonian 

(Do you remember the 
quartic upside-down 
PT-symmetric Hamiltonian?!) 

Painlevé II corresponds to ε = 2 H = p2 – x4  



Instability of Painlevé IV explained in terms of the  

sextic PT-symmetric Hamiltonian 

(Do you remember the 
sextic PT-symmetric  
Hamiltonian?!) 

Painlevé IV corresponds to ε = 4 H = p2 + x6  



In general, this analysis works for huge 
classes of equations beyond Painlevé. 
For example: 



This is a new area of nonlinear 
semiclassical asymptotic analysis! 



I hope you enjoyed this course! 


