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A correlation-energy density functional for
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A density functional for dynamical correlation, to be used in connection with wavefunctions of
the complete-active-space self-consistent ® eld type, is described, and ® rst applications to the
series of two- and four-electron atomic ions as well as to the H2 potential curve are given.

1. Introduction

Density functional theory (DFT) has been very suc-
cessful for both an economic and an accurate descrip-
tion of electronic structure in atomic, molecular and
solid-state physics (for example [1]); electron correlation
e� ects are implicitly included while formally retaining an
independent-particle Hartree± Fock (HF)-like picture.
The HF picture, on the other hand, is just the starting
point for an explicit electron correlation treatment with
the wavefunction-based quantum-chemical ab initio
methods (for example [2]); in contrast with DFT, a sys-
tematic improvement towards the exact results is pos-
sible, but at the expense of a heavy computational
burden caused by long con® guration interaction (CI)
expansions. However, long CI expansions are usually
related to dynamical correlation e� ects which have to
do with the short-range description of the electron cor-
relation hole (electron± electron cusp), while static (long-
range) correlation e� ects caused by near-degeneracies of
ground and low-lying excited states of the same sym-
metry very often can e� ciently be covered by quite
short optimized expansions (of the multicon® guration
self-consistent ® eld (MCSCF) or complete-active-space
self-consistent ® eld (CASSCF) type). Since de® ciencies
of DFT, if any, are likely to occur just with the descrip-
tion of near-degeneracies which are special to individual
molecules and not easily covered by a universal func-
tional, the idea of a CI± DFT coupling combining the
advantages of the two approaches seems to be
rewarding.

In fact, several attempts towards this aim have been
reported in literature (see [3] for a review up to 1990).
There are two main problems: ® rst, a proper separation
between CI and DFT contributions is needed, so that
double counting of correlation energy is avoided, that is
new density functionals have to be derived which, while
transforming into usual DFT correlation-energy func-
tionals for a single-determinant (self-consistent ® eld
(SCF)) reference, lead to vanishing DFT contributions
in the limit of complete CI calculations. Secondly, the
input quantities for the density functionals have to be
modi® ed; individual electron densities q a and q b for the
a and b spin systems should no longer be used with
multideterminant reference wavefunctions, since spin
degeneracies of such wavefunctions are di� cult to
describe with a functional explicitly depending on the
spin polarization z = ( q a - q b ) /( q a + q b ). The second
problem, that is the generalization of z to multidetermi-
nant cases, has recently been solved by using the on-top
two-particle density p (r, r) as DFT input instead of z
[4, 5] (see also [6]). However,the situation with regard to
the ® rst problem, that is the additional DFT parameter
needed to account for the amount of explicitly calcu-
lated (CI) correlation energy, is still far from a univer-
sally accepted solution and, in fact, several variants are
possible here. Such a parameter can either be introduced
into the Hamiltonian, for example by splitting the inter-
electronic interaction 1 /rij into a short- and a long-range
part, with only the former treated by DFT [7, 8], or it
may be related to the wavefunction, for example by
splitting the natural-orbital space into strongly and
weakly occupied members, with only the former used
for the explicitly correlated reference wavefunction [9].
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Anyhow, it is important for the control parameter to
satisfy the following theoretical requirements.

(1) It should have a physical meaning not only for
the system under consideration but also for the
electron gas, in order to provide a simple means
of setting up the required modi® ed density func-
tional.

(2) It should de® ne a proper separation between sta-
tic and dynamic correlation, for every density,
without artefacts (such as steps in the potential
curve) in the reference CI calculation.

With global parameters (e.g. when using a screening
parameter for 1 /rij), the ® rst of the two requirements
can certainly be met; however, di� culties may arise
with the second.

It is the aim of the present paper to look for a local
parameter to be used in connection with standard
quantum-chemical CASSCF calculations which satis® es
both of the above requirements. It is introduced in sec-
tion 2, and ® rst applications, to the correlation energies
of two- and four-electron atoms or ions as well as to the
H2 molecule, are described in section 3; a summary is
given in section 4. (A preliminary account of some
aspects of the present work has been published in [10]).

2. Theory

Let U be a many-electron wavefunction of the
MCSCF type. Let us further assume that near-degen-
eracy e� ects are fully accounted for in U by including
all con® gurations of a given spatial and spin symmetry
which can be generated within a chosen number of
(near-degenerate) one-electron orbitals {u

a
i } de® ning

the active space. Usually, in CASSCF calculations,
there are additional orbitals {u

c
i } lower in energy

which are kept doubly occupied, but we assume the
contribution of excitations from these orbitals to the
active space either to be unimportant or to be covered
explicitly by some kind of internal CI. We invoke use of
DFT only for correlation e� ects involving excitations
into the external space {u

v
i }orthogonal to {u

c
i }, {u

a
i }.

Current DFT approximations (local-density approx-
imation (LDA) and generalized gradient approximation
(GGA)) rely on local properties of a given system as
input parameters, that is the total electron density at
some space point r:

q (r) = N ò |U (rs 1, r2 s 2, . . . ,rN s N)|2 ds 1 dr2 ds 2 ´´´drN ds N,
(1)

and its spin polarization z (r) = [q a (r) - q b (r)]/ q (r)
(where q a and q b are the partial densities of the two
spin systems), as well as gradients of q and z at the
same space point. The (exchange± )correlation energy

( e c or e xc) per particle is derived, as a function of these
parameters, with the help of model-system (usually elec-
tron-gas) data.

Our approach here is similar but di� ers in two points:
® rstly, we replace the set {q (r), z (r)}of input parameters
by {q (r), p (r, r)}, with the on-top two-particle density

p (r, r) = N(N - 1) ò |U (r s 1, r s 2, r3 s 3, . . . , rN s N|2

´ ds 1 ds 2 dr3 ds 3 ´´´drN ds N, (2)

since we deal with multideterminant reference wavefunc-
tions for which z is no longer a valid description [4, 5]. If
our model system for generating the correlation-energy
density functional were still the electron gas with SCF
reference wavefunction, the relation

z (r) = 1 - 2
p (r, r)
q (r)2( )

1/2

(3)

valid for the model system would allow for an easy
transformation to existing functionals e c( q , z ). However,
and that is the second point, our model system cannot
be the same any longer; we may still use the electron gas,
but its reference wavefunction has to be changed. A
suitable model for our molecular CASSCF wavefunc-
tion would be an electron-gas wavefunction already
including part of the correlation e� ects by means of
excitations into low-lying states exp(ik·r) above the
Fermi level kF (kF < |k| < kg). A point-by-point corre-
spondence can be established by equating the (diagonal
of the) projection matrices onto the occupied space in
the two cases:

1
(2p )3 ò |k|<kg

dk(exp(ik ´r))* exp(ik·r) = å
sÎ c,a

i,s
u

s*
i (r) u s

i (r),

(4)
which immediately leads to

kg

kF
= å

sÎ c,a

i,s

2|u s
i (r)|2

q (r)( )
1/3

. (5)

Thus the extended set of input parameters for generating
e c becomes {q (r), p (r, r),kg /kF}, according to equations
(1), (2) and (5). Obviously, in the limiting case of a
closed-shell SCF, we have p = q

2 /2 and kg /kF = 1;
using equation (3), our modi® ed e c to be discussed pres-
ently must transform into one of the currently available
DFT approximations.

In order to construct the new e c, we start from a
calculation described in [9], where results have been
obtained for the correlation energy of the (paramagnetic)
electron gas, ^e c(rs,kg /kF), with rs = (3 /4p q )1 /3, when
excitations are restricted to |k| < kg. For our purposes,
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we ® tted these results by an analytical expression as
follows:

u (rs,k) B 1 -
^e c(rs,k)
^e c(rs, ¥ ) (6)

= å n,m bmnxm- 1kn- 1( )
- 1

,

k =
kg

kF
, x = ln rs .

u (rs,k) describes the reduction in the electron-gas cor-
relation energy when the e� ect of low-lying excitations is
left out, that is just the reduction encountered when part
of the correlation energy is calculated separately such as
in a CASSCF. (From its de® nition, u ® 1 for kg ® kF,
and u ® 0 for kg ® ¥ .) Numerical data for the co-
e� cients bmn are listed in table 1 [11]. Plots of u (rs,k)
for di� erent values of rs, including a comparison with
the original data used for ® tting, are shown in ® gure 1.

As already implied by equation (6), we do not use
^e c(rs,k) directly, but only in the form of a correction
factor u (rs,k). This is done for two reasons.

(1) The values for ^e c(rs, ¥ ) are not as accurate as
Ceperley and Alder’s quantum Monte Carlo
(QMC) values [12] on which current LDA func-
tionals are based.

(2) No values are available for ^e c in the spin-polar-
ized case z /= 0.

Thus, we adopt the following approximation for the new
density functional:

^̂e c q , Ñ q , p , kg

kF( ) = u rs( q ), kg

kF( ) e c( q , Ñ q , z ( p )), (7)

where e c( q , Ñ q , z ) is one of the popular correlation-
energy density functionals available (e.g. LDA in the
parametrization of Vosko et al. [13], or the GGA in
the parametrization of Perdew et al. [14]), and z ( p ) is
used in its SCF approximation, equation (3). For
CASSCF p values which are outside the range of the
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Figure 1. Comparison of the analy-
tical ® t for u (rs, k) with the ori-
ginal results of [9]. (rs values in
atomic units.)

Table 1. Coe� cients bmn in the analytical representations of u (rs, k), cf. text.

bmn/au

m n = 1 n = 2 n = 3 n = 4 n = 5

1 - 0.220 719 3 ´ 101 0.680 7648 ´ 101 - 0.638 631 6 ´ 101 0.286 052 2 ´ 101 - 0.746 607 6 ´ 10- 1

2 0.112 846 9 ´ 101 - 0.253 5669 ´ 101 0.243 282 1 ´ 101 - 0.106 405 8 ´ 101 0.384 368 7 ´ 10- 1

3 - 0.247 559 3 ´ 100 0.424 3142 ´ 100 - 0.256 517 5 ´ 100 0.829 474 9 ´ 10- 1 - 0.318 429 6 ´ 10- 2

4 0.861 656 0 ´ 10- 1 - 0.171 5714 ´ 100 0.106 754 7 ´ 100 - 0.239 288 2 ´ 10- 1 0.257 985 6 ´ 10- 2

5 - 0.650 007 7 ´ 10- 2 0.171 408 5 ´ 10- 1 - 0.146 218 7 ´ 10- 1 0.442 383 0 ´ 10- 2 - 0.442 757 0 ´ 10- 3

6 - 0.249 148 6 ´ 10- 2 0.532 137 3 ´ 10- 2 - 0.370 469 9 ´ 10- 2 0.970 005 4 ´ 10- 3 - 0.951 830 8 ´ 10- 4



single-determinant pair density ( p < 0 or p > q
2 /2)

either an extrapolation of e c to imaginary values of z
[4], or a rede® nition of p ( p = 0 or p = q

2 /2) is possible;
the results of section 3 refer to the ® rst possibility.

Let us ® nally proceed now to a concise formulation of
the density-functional scheme underlying our approach.
Following similar lines as Levy [15], we can write a
universal density functional in the form

F[q , p ]= min
y q ,p

k y q ,p |T + V ee|y q ,p l , (8)

where y q ,p is a wavefunction yielding a given density q

and on-top two-particle density p , and T and V ee are the
operators of kinetic energy and electron± electron inter-
action respectively. In our scheme, F[q , p ]is partitioned
into

FCAS[q , p ]+ ò q ^̂e c q , Ñ q , p , kg

kF( ) dr, (9)

where FCAS has the same form as F[q , p ], but with y q ,p
restricted to be a CASSCF wavefunction for a given
active-space size. The second term in equation (9) has
to be considered as an approximation for F[q , p ]-
FCAS[q , p ], and the parameter kg /kF appearing in the
integral is connected to y q ,p and its active orbitals via
equation (5).

The new functional equations (7) and (9) should
remedy a major part of the errors previously found for
correlation-energy density functionals built upon SCF
reference wavefunctions (for example [7, 16, 17]), since
the unphysical long-range behaviour of the non-local
exchange with a single-determinant wavefunction for
bond-breaking processes for example (which cannot be
easily corrected for by a local-density functional) is no
longer present in the CAS wavefunction.

As with other density functionals, equation (9) sup-
plemented by ò q V nedr, where V ne is the external poten-
tial, should be subjected to a minimization with respect
to q . However, the self-consistency e� ect of a correla-
tion-energy density functional on a SCF wavefunction
has been shown to be small [7]. Thus, in our ® rst appli-
cations to be described in the next section, we perform
energy minimization at the CASSCF level only and
account for the in¯ uence of ^̂e c using the CAS density
without further density variation.

3. Results

3.1. The He isoelectronic series
LDA results for correlation energies of the two-elec-

tron X(Z- 2)+ ions (X = H, He, Li , . . .) are known to
exhibit a qualitatively incorrect trend (ELDA

c ® ¥ ,
while Eexp

c ® constant) [18, 19]. It has to be seen how
well this incorrect behaviour can be remedied when
replacing the SCF reference for density functional by
CASSCF wavefunctions of increasing complexity.

In our calculations, we used large uncontracted
10s6p4d (H- : 10s8p5d) basis sets in order to exclude
® nite-basis artefacts as far as possible. The s functions
were taken from van Duijneveldt [20] and Poirier et al.
[21], supplemented by additional di� use exponents 0.029
and 0.012 in the case of H- . The p, d polarization sets
were chosen to be even-tempered (from [22] for H-

supplemented by di� use p(d) exponents 0.04, 0.016
(0.104); sets with centre 1.5 and scaling factors 2.5 in
the case of He; the latter sets rescaled according to
( z / z He)2 (from [21], p. 89) for Li+ ± Ne8+ ). CASSCF
calculations with increasing size of the active space
(1s, 2s, 2s1p, 3s1p, 3s2p, 3s2p1d) were performed with
the program package Molpro [23± 25]. One- and two-
particle densities q and p from these calculations were
taken as input for a gradient-corrected correlation-
energy density functional (LDA part from [13], and
GGA from [14]); the spin polarization was determined
from p according to equation (3), and an additional
active-space-dependent factor was introduced according
to equations (5) ± (7).

Figure 2 shows deviations from èxperimental’ corre-
lation energies, as a function of the active-space size, for
both CASSCF-only and CASSCF± DFT calculations.
While SCF errors are 40± 50 mH for all the ions, and
SCF± DFT is still o� by about 40 mH for the heaviest
ion considered (Ne8+ ), a signi® cant improvement is
obtained when enlarging the active space; at the
CASSCF level, this improvement is only moderately
rapid, since the missing correlation is of dynamical
nature mainly, but with CASSCF± DFT accuracies of
less than 15 and less than 5 mH are reached already
with 2s and 2s1p spaces respectively.

Figure 3 shows the Z dependence of the CASSCF±
DFT correlation energies in comparison with the experi-
mental curve. It is seen that, already with the 2s active
space, substantially better results are obtained, but the
incorrect ln Z dependence still persists. However, with
the 2s1p space, the theoretical curve is virtually parallel
to the experimental curve.

In order to discuss the in¯ uence of the quality of the
density functional on our results, we compare in ® gure 4
GGA values with LDA values. As expected, the gradient
correction is essential, although its in¯ uence decreases
with increasing size of the active space.

Finally, in ® gure 5 we demonstrate the e� ect of our
using the pair density p (instead of z ) as basic DFT input
parameter, besides the one-particle density q . At the
SCF± DFT level, this is no issue, of course, per de® nition
(cf. equation (3)); a small but systematic improvement is
found, however, with larger active spaces when z is eval-
uated using the actual pair densities of the ions instead
of adopting the usual closed-shell value of z = 0.
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3.2. The Be isoelectronic series
In contrast with the He series, the X(Z- 4)+ ions

(X = Li, Be, B, . . .) are characterized by an important
non-dynamical s2 ® p2 correlation contribution which
linearly scales with Z [18]; the LDA correlation energies
which increase as ln Z only, badly underestimate |Ec| for
large Z (by about 40 mH for Ne6+ ).

In our calculations, we used again large uncontracted
basis sets, of the size 13s10p6d (15s10p6d for Li- ), with
s exponents taken from van Duijneveldt [20]and Poirier
et al. [21](supplemented by di� use exponents 0.009 85
and 0.004 318 3 in the case of Li- ), and even-tempered
p, d sets (scaling factors 2.5 and centres 1.0 and 2.5 for
Be, with rescaling for other atoms as described in the

last subsection). CASSCF calculations were performed,
using these basis sets, for the following active spaces: 2s,
2s1p, 3s1p, 3s2p, 4s2p, 4s2p1d, which are ordered
according to decreasing energy gain per orbital. (An
exception is Li- , where the sequence begins with
2s, 3s, 3s1p, . . .) DFT contributions are evaluated in the
same way as speci® ed for the He series.

Figure 6 shows results for correlation-energy errors,
at both the CASSCF and the CASSCF± DFT levels. The
SCF errors are much larger than for the He series
(180 mH for Ne6+ as against 50mH for Ne8+ ), since
not only non-dynamical contributions but also core cor-
relation energies now have to be accounted for. At the
SCF± DFT levels, the errors are much attenuated but
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Figure 2. Deviations D Ec of CASSCF (lower curves) and CASSCF± DFT (upper curves) results for two-electron ions X(Z- 2)+

from `experimental’ correlation energies, for various de® nitions of the active space (na is the number of active orbitals; na = 1
corresponds to the standard SCF and (gradient-corrected exact-exchange) DFT result).



still sizeable (about 45 mH for Ne6+ ). Including the
2s2 ® 2p2 quasidegeneracy (2s1p active space), the
CASSCF± DFT results deviate by less than 24 mH
from the èxperimental’ correlation energies, but the
sign of the deviation changes (from underestimation to
overestimation). The reason is the DFT overestimation
of dynamical correlation energies already seen for the
He series; in particular, the description of the 1s2 core
correlation energy is virtually at the SCF± DFT level
still, with this active space. This can be remedied by

including the next s orbital into the active space, yielding
an improved accuracy of 7 mH or less. Further exten-
sion of the active space leads to a uniform and mono-
tonic convergence towards experiment.

For the Z dependence of the CASSCF± DFT correla-
tion energies, depicted in ® gure 7, the same remark
applies as for the He series; adding one s plus one p
orbital to the SCF space is su� cient for e� ciently cor-
recting the arti® cial ln Z SCF± DFT dependence, leading
to a curve linear in Z, very close to the experimental
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Figure 3. CASSCF± DFT correlation energies Ec for two-electron ions X(Z- 2)+ as a function of Z, in comparison with
experimental results; na is the number of active orbitals included; a gradient-corrected density functional is used, cf. text.

Figure 4. Comparison of CASSCF± DFT correlation energies Ec for two-electron ions X(Z- 2)+ from correlation-energy density
functionals based on the LDA and including gradient corrections (GGA) respectively; na is the number of active orbitals.



curve. (We note that the use of the two-particle on-top
density for evaluating z (instead of setting z = 0) leads
to a nearly constant shift (7 mH for C2+ ) of the calcu-
lated curve, signi® cantly improving agreement with
experiment.)

Usually, total correlation energies are of less im-
portance than di� erential correlation contributions to
properties. Let us next consider, therefore, the perfor-
mance of the CASSCF± DFT approach for the (® rst)
ionization potential (IP) of the Be series. The IP values
are derived from separate calculations for the (closed-
shell) X(Z- 4)+ and the (open-shell) X(Z- 3)+ ions. Al-

though our approach presumably is less accurate for
the latter than for the former, since the correction func-
tion u (equation (6)) has only been calculated for z = 0
and is used for z /= 0 without change, the results are
quite encouraging (® gure 8). With a 3s1p active space,
the SCF± DFT IPs are greatly improved, again leading
to the required linear Z behaviour.

3.3. The H2 molecule
Potential curves of molecules with covalent bonds

are very good candidates for the application of our
new approach; near-degeneracy e� ects become very
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Figure 5. Comparison of CASSCF± DFT correlation energies Ec for two-electron ions X(Z- 2)+ from correlation-energy density
functionals without and with inclusion of information on the pair density p respectively (in the former case, a zero spin
polarization z = 0 is used); na is the number of active orbitals.

Table 2. CASSCF and CASSCF± DFT spectroscopic constants for the H2 molecule, for various active-
space sizes na (na = 1 corresponds to the standard SCF and (gradient-corrected exact-exchange) DFT
result), in comparison with full CI and experimental results.

CASSCF CASSCF± DFT

na re/au De/H x e/cm- 1 re/au De/H x e/cm
- 1

1 1.387 0.1336 4599.9 1.383 0.1806 4636.1
2 1.426 0.1523 4282.4 1.413 0.1811 4399.1
3 1.415 0.1596 4347.4 1.408 0.1789 4417.7
5 1.405 0.1700 4415.4 1.403 0.1804 4445.2
6 1.405 0.1706 4418.3 1.403 0.1790 4439.3
8 1.405 0.1713 4421.4 1.402 0.1777 4442.6

10 1.404 0.1717 4425.7 1.403 0.1771 4443.2

Full CI 1.402 0.1739 4438.2
Experimental 1.401 0.1745 4400.4



strong at the dissociation limit, and SCF± DFT is bound
to fail here, since DFT cannot compensate the large
Hartree± Fock error for r @ re without symmetry breaking.

Let us ® rst consider the H2 potential curve, as the
simplest example. We used the 10s8p5d basis set
described for H- in section 3.1. The following orbitals
were successively included into the active space: 1s g,
1s u, 2s g, 1p u, 2s u, 1p g, 1d g. Again the sequence was
chosen according to decreasing CASSCF energy contri-
butions. Results for equilibrium bond length re, disso-
ciation energy De and vibrational frequency x e are given
in table 2. It is seen that the CASSCF± DFT results
constitute a signi® cant improvement over CASSCF
only. Of course, with only one orbital in the active

space (SCF± DFT), the potential curve is incorrect in
shape (leading to a too small re and too large x e), and
the dissociation energy is only acceptable since the
exact (non-relativistic) energy of two separated H
atoms was taken as reference. However, already with a
minimal active space allowing for proper dissociation
(1s g,1s u), the potential curve is very similar to the
exact curve (® gure 9): re is accurate to 1 pm and the
dissociation energy is o� by 7 mH only. When De is
evaluated with respect to the molecular result at large
distances (r = 10 Bohr) instead of that for (exact) separ-
ated atoms, the atomic DFT error virtually cancels out,
and the error in the dissociation energy with a two-
orbital active space is reduced to 1.8 mH.
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Figure 6. Deviations D Ec of CASSCF (lower curves) and CASSCF± DFT (upper curves) results for four-electron ions X(Z- 4)+

from `experimental’ correlation energies, for various de® nitions of the active space (na is the number of active orbitals; na = 2
corresponds to the standard SCF and (gradient-corrected exact-exchange) DFT result).
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Figure 7. CASSCF± DFT correlation energies Ec for four-electron ions X(Z- 4)+ as a function of Z, in comparison with
experimental results; na is the number of active orbitals included; a gradient-corrected density functional is used, cf. text.

Figure 8. CASSCF± DFT correlation contribution to the IPs of the four-electron ions X(Z- 4)+ ; na is the number of active orbitals
included; a gradient-corrected density functional is used, cf. text.

Figure 9. CASSCF± DFT potential curve of the H2 molecule, for two active spaces (na is the number of active orbitals), in
comparison with experimental points; a gradient-corrected density functional is used, cf. text.



4. Conclusions

We have described a modi® cation of usual gradient-
corrected correlation-energy density functionals, so that
they can be used in connection with CASSCF wavefunc-
tions. Drawing information from the on-top pair den-
sity, in addition to the one-particle density, resolves
problems of symmetry breaking. Introducing a correc-
tion factor, depending on the active space employed,
enables a smooth transition between the limiting case
of a pure density-functional and a full-CI calculation.

We have shown, for the correlation contributions to
the ionization energies of two- and four-electron ions
and the potential curve of H2, that DFT errors can be
e� ectively removed while still keeping the active-space
size relatively small.

The authors are indebted to Professor H.-J. Werner
(Stuttgart) for making available his program package
Molpro.
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