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1. Introduction

It may seem that a minimal requirement for an approximation
for describing an electronic system is that if it were separated into
two disjoint and distant spatial regions, XA and XB, then the energy
of the system equals the sum of the energies of the separate parts
(size-consistency):

EðA � � �BÞ ¼ EðAÞ þ EðBÞ: ð1Þ

However, many of the approximate methods used in quantum
chemistry do not satisfy this requirement. This note discusses the
difficulty of satisfying this requirement in density functional the-
ory. In the first part, density matrices are given in a second quan-
tized form and the energy expression to which they lead is
analyzed. Next, it is shown that semi-local approximations, as used
in density functional calculations, do not have the structure needed
to correctly describe size-consistency when degeneracy is present.
Finally two ways to get around the problem are discussed. The first
one exploits symmetry breaking, and is common in density func-
tional calculations. The second one is a generalization of the
Kohn–Sham scheme introducing a partial interaction between
electrons. Unfortunately, in spite of some success, neither com-
pletely solves the problems related to degeneracy in density func-
tional approximations.

The problems treated in this paper have been repeatedly ad-
dressed in the last thirty years (see, e.g., Refs. [1–6]).
ll rights reserved.
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2. Formulas for separated subsystems

2.1. Wave function

When treating separated subsystems, it is often assumed that
the wave function of the system is given by a product of the wave
functions of the subsystems:

WðA � � �BÞ ¼AWðAÞWðBÞ; ð2Þ

where W(A) vanishes on XB, while W(B) vanishes on XA. A is the
antisymmetrization operator. The ansatz of Eq. (2), is not correct
when degeneracy is present in at least one of the subsystems.
One should write:

WðA � � �BÞ ¼A
X
i;m

ci;mWiðAÞWmðBÞ; ð3Þ

where the indices i, m enumerate the degenerate states on the sub-
systems A and B, respectively. The Wi(A) vanish on XB while the
Wm(B) vanish on XA.

For any expectation value, it is sufficient to take Wi(A) antisym-
metric and Wm(B) antisymmetric; the antisymmetrization that
exchanges particles between the separated subsystems does not
contribute to the expectation value: a permutation of r1 2 XA

and r2 2XB in Wi(r1, . . .; A)Wm(r2, . . . ;B) produces Wi(r2, . . . ; A)
Wm(r1, . . . ;B) which is zero as Wi(A) vanishes on XB and Wm(B)
vanishes on XA (see, e.g., Ref. [7]). Thus we can write

WðA � � �BÞ ¼
X
i;m

cimWiðAÞWmðBÞ; ð4Þ

One is free to choose the basis of degenerate states, Wi(A),
Wm(B), via separate unitary transformation on each of them,
0.1016/j.chemphys.2008.10.023
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WiðAÞ ¼ RjUij
eWiðAÞ

WmðBÞ ¼ RnVmn
eWnðBÞ:

These transformations can be chosen to yield a singular
value decomposition (see, e.g., Ref. [8], Eq. 2.9.1; similar to pro-
ducing corresponding orbitals [9], or natural transition orbitals
[10]):X
i;m

UijcimVmn ¼ jjdjn:

As only this basis will be used below, we will drop the tilde
above the W, in order to keep notation simple. We thus have:

WðA � � �BÞ ¼
X

i

jiWiðAÞWiðBÞ: ð5Þ

Let us consider a few simple examples. The first example is the
stretched Li2 molecule, in its singlet and triplet states, dissociating
into ground states of the Li atom:

W1;2ðAÞ ¼ WðLi; MS ¼ �1=2Þ;
W1;2ðBÞ ¼ WðLi; MS ¼ �1=2Þ;
j1;2 ¼ �1=

ffiffiffi
2
p

; for the singlet;

j1;2 ¼ 1=
ffiffiffi
2
p

; for the triplet:

ð6Þ

Next, we consider the state of the stretched Li2 molecule, disso-
ciating into the ground state ionic forms:

Li+ � � � Li�M Li� � � � Li+:
W1;2ðAÞ ¼ WðLi�Þ;
W1;2ðBÞ ¼ WðLi�Þ;
j1;2 ¼ 1=

ffiffiffi
2
p

:

ð7Þ

For the stretched ground state of Li2
+ we take

W1ðAÞ ¼ WðLi; MS ¼ 1=2Þ;
W1ðBÞ ¼ WðLiþÞ;
W2ðAÞ ¼ WðLiþÞ;
W2ðBÞ ¼ WðLi; MS ¼ 1=2Þ;
j1;2 ¼ 1=

ffiffiffi
2
p

:

ð8Þ

Please notice that while in the lowest singlet or triplet
state of the stretched Li2 molecule all Wi(A) had the same
number of electrons, this was not the case in the last two
examples.

2.2. Reduced density matrices

In order to avoid problems with particle number, and to deal
with separation in space, we will use field operators, wr(r), where
r = " or ; (a closely related formalism is also used in a similar con-
text in Ref. [5]). The first-order density matrix is given by the
expectation value of the operator:

ĉðr; r0Þ ¼
X
r

wyrðrÞwrðr0Þ: ð9Þ

By choosing in the equation above r = r
0

we have the density
operator,

q̂ðrÞ ¼
X
r

wyrðrÞwrðrÞ: ð10Þ
Please cite this article in press as: A. Savin, Chem. Phys. (2008), doi:1
For the two-particle density, we have

P̂ðr1; r2Þ ¼
X
r1 ;r2

wyr1
ðr1Þwyr2

ðr2Þwr2
ðr2Þwr1

ðr1Þ

¼ q̂ðr1Þq̂ðr2Þ � dðr1 � r2Þq̂ðr1Þ: ð11Þ

Using now the expression for W(A. . . B), Eq. (5), we get for the
density of the dissociated system:

qðrÞ ¼ hWðA . . . BÞjq̂ðrÞjWðA � � �BÞi

¼
X

i;j

j�i jjhWiðAÞWiðBÞjq̂ðrÞjWjðAÞWjðBÞi:

We have to consider two situations: r is either in XA, or in XB.
For example, when r is in XA, we have:

qðrÞ ¼
X

i;j

j�i jjhWiðAÞjq̂ðrÞjWjðAÞihWiðBÞjWjðBÞi

With

jjij2 ¼ xi ð12Þ

and using the orthonormality of the wave functions, we obtain

qðrÞ ¼
X

i

xihWiðXÞjq̂ðrÞjWiðXÞi ¼
X

i

xiqiðr; XÞ; r 2 XX ;

X : A or B; ð13Þ

where we have identified on the right hand side subsystem
quantities,

qiðr; XÞ ¼ hWiðXÞjq̂ðrÞjWiðXÞi; r 2 XX ; X : A or B ð14Þ

As, by construction, Eqs. (5) and (12),

xi 2 ½0;1�;X
i
xi ¼ 1:

ð15Þ

the xi can be seen as weights of an ensemble.
In the simple examples given above, (Eqs. (6)–(8)) the xi = jjij2

were restricted to 1/2, to the equi-ensemble situation. In general,
this must not be the case. For example, in Eq. (8), a weak perturba-
tion competing with that of the interaction between atoms may
destroy symmetry and progressively displace the density between
them.

In the same way as for obtaining Eq. (13), we obtain for the
first-order density matrix, when r and r

0
are in the same region,

cðr; r0Þ ¼
X

i

xihWiðXÞjĉðr; r0ÞjWiðXÞi

¼
X

i

xiciðr; r0; XÞ; r; r0 2 XX ; X : A or B: ð16Þ

As for the density, we identify subsystem density matrices,

ciðr; r0; XÞ ¼ hWiðXÞjĉðr; r0ÞjWiðXÞi; r; r0 2 XX ; X : A or B: ð17Þ

When r and r
0

are in different regions, the formula is different:

cðr; r0Þ ¼
X

i;j

j�i jj

X
r

WiðAÞ wyrðrÞ
�� ��WjðAÞ

� �
hWiðBÞjwrðr0ÞjWjðBÞi

r 2 XA; r0 2 XB ð18Þ

and a similar expression when r is in XB and r
0
in XA. We notice that

products of subsystem quantities show up.
The r.h.s. of Eq. (18) is not necessarily zero: although it is zero in

cases like those described by Eq. (6) because hWi(B)jwr(r
0
)jWj(B)i =

0, this term is non-zero in situations like those given by Eq. (8)
where Wi and Wj have different particle number.
0.1016/j.chemphys.2008.10.023
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A similar expression is obtained for the two-particle density
Pðr1; r2Þ ¼

P
i
xihWiðXÞjP̂ðr1; r2ÞjWiðXÞi ¼

P
i
xiPiðr1; r2; XÞ r1; r2 2 XX ; X : A; or BP

i;j
j�i jjhWiðAÞjP̂ðr1ÞjWjðAÞiWjðBÞijq̂ðr2ÞjWjðBÞ r1 2 XA; r2 2 XBP

i;j
j�i jjhWiðAÞjP̂ðr2ÞjWjðAÞiWjðBÞijq̂ðr1ÞjWjðBÞ r1 2 XB; r2 2 XA

8>>>>>><>>>>>>:
ð19Þ
where

Piðr1; r2; XÞ ¼ hWiðXÞjP̂ðr1; r02ÞjWiðXÞi; r1; r2 2 XX ; X : A or B:

ð20Þ

Sometimes hWiðAÞjq̂ðrÞjWjðAÞi is zero for i – j. This is the case, for
instance, for the examples given above (Eqs. (6)–(8)) which yield
zero either because they differ by Ms, or by particle number. How-
ever, this is not always the case. For example when Wi(A) are px, py

functions: hW1jq̂jW1i ¼ p2
x ; hW2jq̂jW2i ¼ p2

y and hW1jq̂jW2i ¼ pxpy.
In Eq. (19), as well as in Eq. (18), one can substitute jijj by

signðjijjÞ
ffiffiffiffiffiffiffiffiffiffiffixixj
p

, but cannot eliminate ji due to the sign function.
For example, in Eq. (6), sign(j1j2) = �1 for the singlet, but
sign(j1j2) = +1 for the triplet.

2.3. Energy

To compute the energy, we now use:

E ¼ 1
2

Z
r2

r0cðr; r0Þjr0¼r þ
Z

vneðrÞqðrÞ þ
1
2

Z Z
Pðr1; r2Þ=jr1 � r2j;

ð21Þ

which yields with Eqs. given above for the density, density matrix,
and two-particle density, after separating into integration domains:

E ¼
X

i

xi

X
X¼A;B

1
2

Z
Xx

rr02cðr; r0; XÞjr0¼r þ
Z

Xx

vneðrÞqðr; XÞ
�

þ1
2

Z
Xx

Z
XX

Pðr1; r2; XÞ=jr1 � r2j
�
: ð22Þ

As we consider subsystems that are infinitely separated, the
terms containing r in one spatial domain, and r

0
in the other do

not contribute to the energy expression:

� To obtain the kinetic energy, r
0

is set to r after taking the deriv-
ative with respect to r

0
.

� The term in the pair density where r and r
0

are in different
regions is multiplied by the inverse distance of the two subsys-
tems, and vanishes when the separation becomes infinite.

We can group together the terms in Eq. (22) that are integrated
over the same domain to get

EðA � � �BÞ þ
X

i

xiðEðWiðAÞÞ þ EðWiðBÞÞÞ: ð23Þ

Notice that we cannot always use E(Wi(A)) = E(A), as we have
not assumed that the number of electrons on system A has to be
the same for all Wi (cf. example in Eq. (7) or (8)). In such a case
degeneracy is produced by having the same E(Wi(A)) + E(Wi(B))
for all i.

The energy of one of the subsystems can be defined as

EðXÞ ¼
X

i

xiEðWiðXÞÞ; X : A or B; ð24Þ

which is also the formula given in Ref. [1] as the energy of a system
with non-integer particle number. Its failure with approximate den-
sity functionals, already mentioned by Slater [11], generalized in
Please cite this article in press as: A. Savin, Chem. Phys. (2008), doi:1
Ref. [1], has aroused renewed interest recently [12,13].Of course,
Eq. (24) can also be trivially applied when all E(Wi(X)) are equal.

It should be stressed here that as soon as the distance becomes
finite, there will be terms like

1
2

Z
XA

Z
XB

Piðr1;r2;XÞ=jr1� r2j

¼
X

i;j

k�i kj
1
2

Z
XA

Z
XB

hWiðAÞjq̂ðr1ÞjWjðAÞihWiðBÞjq̂ðr2ÞjWjðBÞi=jr1� r2j

ð25Þ
showing up. Notice that these are not expressed in terms of qi, and
xi only. Such a situation is also interesting when the subsystems
are well-separated, in the sense that Wi(X) is 	0 outside XX, but
not infinitely far apart. For example biradicals can provide such sit-
uations (see, e.g., Ref. [14]).

2.4. Density functional theory

In exact density functional theory, one obtains the ground state
energy

E ¼ F½q� þ
Z

qðrÞvneðrÞ ð26Þ

by using the ‘external’ potential vne (of interaction between nuclei
and electrons) and the (‘universal’) functional of the density F for
any ground state density, q.

In the case we consider, disjointness is produced by infinite sep-
aration of subsystems, and we have, using Eq. (13),
(q(r) = q(r;A) + q(r; B)), introducing the notation qi(A) for the den-
sity produced by wi(A)

q ¼
X

i

xiðqiðAÞ þ qiðBÞÞ ð27Þ

and by using Eq. (23),

F
X

i

xiðqiðAÞ þ qiðBÞÞ
" #

þ
X

i

xi

Z
ðqiðAÞ þ qiðBÞÞvne

¼
X

i

xi F½qiðAÞ� þ
Z

qiðAÞvne þ F½qiðBÞ� þ
Z

qiðBÞvne

� �
ð28Þ

yielding

F
X

i

xiðqiðAÞ þ qiðBÞÞ
" #

¼
X

i

xiðF½qiðAÞ� þ F½qiðBÞ�Þ

¼
X

i

xiF½qiðAÞ� þ
X

i

xiF½qiðBÞ� ð29Þ

Here, too, one can define a contribution of a subsystem

FðXÞ ¼
X

i

xiF½qiðXÞ�: ð30Þ

Notice that all the F[qi(X)] are equal when symmetry produces
degeneracy in subsystem X: all E(Wi(X)) are equal due to degener-
acy,

R
qivne are equal (as one is transformed into another by sym-

metry operations), and the differences between the former and the
latter (yielding F) are equal, too. Finally as

P
ixi ¼ 1, they are all

equal to F(X).
0.1016/j.chemphys.2008.10.023
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2.5. Density functional approximations

In the literature it is often stated that ‘the exact functional is
unfortunately unknown’. This statement is wrong, as the exact
functional is known (see, e.g., Ref. [15]), and even accessible by
numerical calculations (see, e.g., Ref. [16]). However, it is signifi-
cantly more difficult to obtain the ground state energy after con-
structing the exact density functional and using it in Eq. (26)
than to use the same level of approximation in directly solving
the Schrodinger equation. However, approximations can be made
which have proven to yield very good results, in spite of their
astonishing simplicity.

Density functional approximations are constructed

� decomposing the universal density functional
� making approximations requiring the knowledge of q over small

regions of space.

Decomposing the universal density functional is dictated by the
wish to introduce physical knowledge. For example, Hohenberg
and Kohn [17] split

F½q� ¼ G½q� þ U½q� ð31Þ

by defining the Coulomb term

U½q� ¼ 1
2

Z Z
qðr1Þqðr2Þ=jqðr1Þ � qðr2Þj ð32Þ

and Kohn and Sham [18] split further

G½q� ¼ Ts½q� þ Exc½q� ð33Þ

by defining the kinetic energy of the system of non-interacting fer-
mions, Ts[q]; Exc is the exchange and correlation energy.

The advantage of introducing U[q] is the correct treatment of
the electrostatic interaction: on one hand, by Eq. (26), the interac-
tion between electrons and nuclei is treated exactly, as is the inter-
action between nuclei. Approximations for U[q] would destroy the
balance, and generate serious problems, e.g., for Madelung forces
in crystals. Recall also the problems which existed in the sixties
when designing semi-empirical methods when the nuclear attrac-
tion was not properly compensated by the electron repulsion [19].
Ts[q] was introduced to take into account the effects of the Pauli
repulsion, which is mainly manifest in the kinetic energy.

Making approximations requiring the knowledge of q over
small regions of space means using for density functionals approx-
imations of the typeZ

f ðq; jrqj; . . .Þ ð34Þ

(called semi-local) as they need only information on q in a small re-
gion of space (at r, and around r, to obtain q’s derivatives). This has
the computational advantage of producing linear scaling of the
computational time with respect to the size of the system.

Semi-local approximations (Eq. (34)) seem also to be justified
by another statement often found in literature, namely ‘density
functional theory is size-consistent’. Exact density functional the-
ory, by being exact, satisfies, of course, the requirement of size-
consistency. However, the statement is not always valid when
speaking about density functional approximations.

Let us first consider the argument of size-consistency (see, e.g.,
Ref. [22]).Z

f ðq; . . .Þ ¼
X

X

Z
XX

Z
f ðq; . . .Þ¼?

X
X

Z
XX

Z
f ðqðXÞ; . . .Þ: ð35Þ

Usually, one assumes that the density is an ’intensive’ quantity,
that its value in point r 2XA is not affected by anything happening
elsewhere, i.e., q(r) = q(r;X), for r 2Xx, and thus the second equal-
Please cite this article in press as: A. Savin, Chem. Phys. (2008), doi:1
ity would be true. However, when degeneracy is present, we have
to use Eq. (13), which yieldsZ

f ðq; . . .Þ ¼
X

X

Z
xx

f
X

i

xiqi; . . .

 !
¼?
X

X

X
i

xi

Z
xx

f ðqiðXÞ; . . .Þ:

ð36Þ

A form of f which would satisfy the second equality is f / q,
but this is, of course, not interesting, as the integration simply
yields a constant times the number of electrons in a system,
and thus no contribution to reaction energies. Taking f / q4/3, as
is done for the dominating term in almost all Exc[q] approxima-
tions, brings in – even when the qi are spatially separated – a pre-
factor x4=3

i which immediately shows that size-consistency is not
satisfied.

Maybe the most important degeneracy-related difficulty is that
in Eq. (29) one needs to obtain the same result for all xi. The values
of xi are determined by the way the system is ’prepared’, but the
energy must not be affected by it. Let us first consider the case
when the degeneracy does not modify the number of electrons
on a subsystem. In this case, as stated below Eq. (30), the same va-
lue is obtained for the exact F, for all degenerate densities qi. This is
very difficult to achieve with approximations, as they are con-
structed to give changes in energies related to small changes in
the density (by bond formation), while in the presence of degener-
acy it is required that no change in the energy occurs for significant
density changes [3]. None of the known approximations is able to
reproduce this feature.

When the number of electrons is not kept constant within one
of the subsystems, like in the example of Eq. (8), the situation is
also complicated. The approximate functional by its semi-local
character, cannot see the other subsystem. We have to construct
functionals which are linear, as required by Eq. (30). This is more
difficult to do than it may seem at first sight. The problem can be
illustrated by noticing that already the separation given in Eqs.
(31), (32) introduces a term which is non-linear (in the weights
xi):

U
X

i

xiqi

" #
¼
X

i;j

xixj
1
2

Z Z
qiðr1Þqjðr2Þ=jr1 � r2j

¼
X

i

xiU½qi� �
X
i<j

xixjU½qi � qj�: ð37Þ

Even if the qi are on different subsystems, the last term on the r.h.s.
in Eq. (37) does not vanish; it only reduces to terms x2

i U½qi� that are
not small in magnitude compared to the linear terms.

As F is linear, cf. Eq. (30), using the separation given in Eq.
(31) implies compensating the non-linear term above by an
identical term in G[q]. Thus, approximations made on G[q] get
more complicated. Please notice that the non-linear term in Eq.
(37) has similitude with the self-interaction term as it describes
some spurious interaction (here between members of an
ensemble).

For a one- and a two-electron system, Ts can be explicitly writ-
ten down in terms of the density q (as Nu2 = q; u is the orbital
yielding q and minimizing 1

2

R
jruj2):

Ts½q� ¼
Z

1
8
jrqj2=q;

Z
q ¼ 1 or 2

For a subsystem having less than one electron, e.g., one half-
space containing one of the H nuclei in the stretched Hþ2 molecule,
the density is given by xq and, correctly, Ts[xq] = xTs[q1], where
q1 is the electron density of the hydrogen atom. If one considers,
however, the stretched H�2 molecule, q = (1 �x)q1 + xq2, where
q2 is the electron density of H�, a non-linear term shows up (see
also Refs. [20,21]):
0.1016/j.chemphys.2008.10.023
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Ts½ð1�xÞq1 þxq2� ¼
Z

1
8
jrðð1�xÞq1 þxq2Þj

2

ð1�xÞq1 þxq2

¼ ð1�xÞTs½q1� þxTs½q2� �xð1�xÞ1
8



Z

1
ð1�xÞq1 þxq2

ðq2rq1 � q1rq2Þ
2

q1q2
:

ð38Þ

Please notice that the non-linear term would vanish, if q2 were
simply twice q1, as for a non-interacting system. The physical den-
sity q2 does not have this property, however. Furthermore, as the
non-linear term is always non-positive,

Ts ð1�xÞq1 þxq2½ � 6 ð1�xÞTs q1½ � þxTs q2½ �

showing that in the situation considered here the pure state Kohn–
Sham solution is preferred to the ensemble (fractionally occupied)
solution, for q = (1 �x)q1 + xq2.

Thus, the non-linear terms in U[q] and Ts[q] also show up (to be
compensated) in Exc[q] which is the quantity which is approxi-
mated for Kohn–Sham calculations. Splitting is Exc into an ex-
change and a correlation part also produces non-linear terms.
Examples for some simple systems can be found in Ref. [22].

When partial (spin-) densities, (q", q;) are present, the need of
treating ensembles correctly shows up even more often. An often
given example is the stretched H2 molecule, where q is that of
the H atoms, but q" = q; = q/2 are that of an equi-ensemble of H
atoms [3,16,17].
3. Workarounds

3.1. Selected members

One possibility to get around this difficulty is to make approxi-
mations which allow symmetry breaking, producing thus sets of qi

: the functional is applied only for selected members of the ensem-
ble. In fact, this recipe is just what is currently done in density
functional calculations (by using the unrestricted Kohn–Sham for-
malism) and approximations often produce symmetry-broken
solutions. It has even been argued that it is more easy to generate
approximations for symmetry-broken solutions [23].

As other symmetry broken solutions can be generated by sym-
metry operations, violating symmetry is not a problem, as it can be
restored by producing ensembles of the symmetry broken solu-
tions [3]. Notice that this symmetry restoration is not equivalent
to using ensembles in the Kohn–Sham approach (as presented,
e.g., in Ref. [24]). In the latter, one uses ensembles for constructing
Ts, while in the former, the ensemble shows up in all the terms of
the energy, as in Eq. (22) (cf, Ref. [3], Section 4.1, Eqs. (17), (18) in
Ref. [1], and a similar treatment for excited state ensembles, Refs.
[25–27]).

Breaking symmetry in approximate calculations does not al-
ways follow exact theory. An example is that of the stretched
H2 molecule, where all commonly used functionals produce a
symmetry broken solution (with q" = q on one atom, q; = q on
the other atom), while accurate Kohn–Sham calculations (using
Kohn–Sham orbitals u ¼

ffiffiffiffiffiffiffiffiffi
q=2

p
) produce solutions for q" = q; =

q/2 [28,29].
One can see from Eq. (38), valid for 1 <

R
q < 2, that Ts attains

its minimum for 0 < x < 1; the pure state (x = 0 or 1) or symmetry
broken solutions have higher kinetic energy. For U[q] we also see
that the non-linear terms also favors the formation of an ensemble
with x different from 0 or 1 (cf. Eq. (37)). Thus, the non-linear
terms in Exc[q] have to be positive enough to make the ’pure state’,
i.e., x = 0 or 1, or ’symmetry broken’ states at least degenerate with
those obtained for x 2 (0,1).
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These considerations ’of principle’ may not play a role for a
pragmatic person, as often symmetry broken solutions show up
in calculations, but there are also some practical limitations:

� symmetric, non-size-consistent solutions turn out to be lower in
energy than the symmetry broken ones, and thus not be chosen
by the variational procedure, e.g., in Xþ2 molecules [30];

� as in unrestricted Hartree–Fock [31], multiple unrestricted solu-
tions may exist;

� one may have to go further with symmetry breaking, than just
using spin-unrestricted Kohn–Sham calculations (see, e.g.,Refs.
[3,31,32]).

3.2. Back to wave functions

When analyzing size-consistency, we only looked up to now at
what happens when a system completely dissociates. However, the
treatment should be correct also for a finite distance, and this is by
no means guaranteed by semi-local approximations. In fact, long-
range interactions are dominated by R�n-dependent terms, which
do not show up even when there are no degeneracy effects at infin-
ity. One can see this e.g., from Eq. (19), where i takes only the value
one, and thus ji = 1,

1
2

Z Z
Pðr1; r2Þ=jr1 � r2j !

1
2

1
R

Z Z
qAðr1ÞqBðr2Þ ¼

NANB

2
1
R
:

Using a semi-local form produces for energies, to the same or-
der R, a sum of terms, cf. Eq. (35), without 1/R terms.

As a side-remark, this also is a reason for using the exact form of
U[q], Eq. (32), which introduces such a term.

In order to introduce a more flexible form of P(r1,r2) it is possi-
ble to generalize the Kohn–Sham ground state energy expression,

E0 ¼minW W �1
2

X
i¼1;N

r2
i

�����
�����W

* +
þ
Z

qWvne þ U½qW� þ Exc½qW�;

ð39Þ

where qW is the density produced by W, into

E0 ¼minW W �1
2

X
i¼1;N

r2
i þwðjr1 � r2jÞ

�����
�����W

* +
þ
Z

qWvne

þ U½qW; w� þ Exc½qW; w�; ð40Þ

where the interaction w is hopefully weak enough to both produce a
flexible form of P(r1,r2) and not to require a computationally to hea-
vy burden (see, e.g., Refs. [3,33–48]). Of course, U and Exc will now
depend on the interaction used. (For w = 0, they fall back into the
Kohn–Sham expressions.) A simple and useful form for w is [13,36]:

wðr12Þ ¼ erfðlr12Þ=r12: ð41Þ

This interaction is nearly constant (and thus with no effect on
W) for r12 smaller than 	1/l, and decays as 1/r12 beyond
r12 	 1/l. It is a long-range interaction. The remaining part (the
’short range’) has to be described by the density functional.

An advantage of introducing an interaction w is that, even weak,
it selects the proper form of the wave function which is allowed to
be constructed from several Slater determinants. Recall that in
Kohn–Sham, one traditionally works with a single Slater determi-
nant, or with an ensemble. In Kohn–Sham, this can produce a wave
function which in spite of producing the right q(r) produces P(r1,r2)
which is far from that of the exact one, and cannot reproduce the
features required by Eq. (19). An example might be the stretched
H2 molecule [28,29], mentioned above, which has in accurate
Kohn–Sham a solution described by a single Slater determinant.
Thus, when the subsystems considered are at large separations,
0.1016/j.chemphys.2008.10.023
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made by the LDA approximation, dashed curve, as a function of the range parameter
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long-range interactions, like that in Eq. (41), describe their interac-
tion correctly, via the physical Coulomb interaction operator. Fur-
thermore, as the wave function is constructed from several Slater
determinants, P(r1,r2) can have the correct form, and this allows
a better description of the energy for a large separation between
subsystems. This has been confirmed by numerical calculations
for van der Waals systems (see, e.g., Refs. [37–41]).

Another advantage of introducing an interaction w is that it
can – if carefully chosen – improve the quality of the density
functionals, as these now do not have to describe features for
which they are not adapted and represent the short ranged fea-
tures which are imposed onto them by the nature of the semi-lo-
cal approximation. In the exact theory, the parameter l can take
any value. However, as one uses approximations, the value of l
might become very important. For example, for l = 0, the interac-
tion disappears, so we are back at the Kohn–Sham method. How-
ever, it can be shown that for very short range (very large l) even
the local density approximation (LDA) becomes exact for ex-
change, and very accurate for correlation [36,43,44]. Fig. 1 shows
that the errors made by the LDA (exchange functional in Refs.
[3,36], correlation functional from Ref. [49]), become small even
for values of l which are not very large, and the contribution of
the functional is significant. For the atom of H for which the re-
sults are shown in Fig. 1, the errors are less than 	1 mhartree
for l larger than 	0.5. In different applications l has been chosen
to be close to 0.5 bohr (see, e.g., Refs. [45–48]). Using range sep-
aration also brings improvement for problems where a single
determinant provides a good (even exact) description of the wave
function [42].

Let us now see what happens when degeneracy shows up. A
simple example is that of the stretched Hþ2 molecule, or H+1/2, the
equi-ensemble of the H+ ions and H atoms (a situation similar to
that in Eq. (8)). The exact Exc[q] is known in this case, at is has to
compensate exactly U[q = 1/2 q1] where q1 is the density of the
H atom:

E xc½q� ! �
1
2

Z Z
qðr1Þqðr2Þ=r12 ¼ �

1
8

Z
q1ðr1Þq1ðr2Þ=r12

¼ �1
8

5
8

hartree 	 �0:078hartree ð42Þ

Fig. 2 shows that the error in Exc produced for x – 0 is drastically
reduced when the range parameter l is larger than 	0.5.

The range separation reduces, but does not eliminate all the
problems of the density functional approximations. For example,
using a semi-local form for the approximations still does not solve
the problem of obtaining different values for the functional when
different degenerate densities are used.
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4. Conclusions

The size-consistency requirement, Eq. (1), is not automatically
satisfied with density functional approximations when degeneracy
is present. This is easily seen when the first-order density matrix,
Eqs. (16) and (18), the one-particle density, Eq. (13), and the
two-particle density, Eq. (19), are written using field operators.
Although the energy seems to be partitionable into subsystem
quantities, Eqs. (23) and (24), the dependence of the ensemble
weights, xi, is explicit, and determined by the ’preparation’ of
the system. The situation gets even more complicated when the
distance between subsystems becomes finite, as the proper
description of the interaction between electrons located in differ-
ent subsystems needs a proper two-particle density matrix, and
this not only depends on the weights, but also on signs of the coef-
ficients which showed up in the wave function, cf. Eqs. (19) and
(25).

In order to avoid this problem, two paths were considered. The
first one is in fact hidden in most practical calculations: one gives
up describing ensemble densities, and uses functionals which in-
duce symmetry broken solutions. Restoration of symmetry is no
problem, but other problems, mainly how to induce the symme-
try-broken solution, remain to be clarified. The other path is to
generalize the Kohn–Sham method by permitting some interaction
between particles. Although this is not a complete solution of the
problem, a clear improvement has been seen in practical
calculations.

This paper has not dealt with related issues, like the lack of cor-
respondence between degeneracy in real systems and that in the
Kohn–Sham system (see, e.g., Refs. [15,50–53]), or the effect of
molecular dissociation on the Kohn–Sham potential (see, e.g., Refs.
[2,21,53–55]).

Finally, it should be mentioned that the formalism presented
here can be applied to degeneracy produced by spins, and also
degeneracies showing up on a potential energy surface.
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