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ABSTRACT: The combination of density-functional theory with other approaches to
the many-electron problem through the separation of the electron—electron interaction
into a short-range and a long-range contribution (range separation) is a successful
strategy, which is raising more and more interest in recent years. We focus here on a
range-separated method in which only the short-range correlation energy needs to be
approximated, and we model it within the “extended Overhauser approach.” We
consider the paradigmatic case of the H, molecule along the dissociation curve, finding
encouraging results. By means of very accurate variational wavefunctions, we also
study how the effective electron—electron interaction appearing in the Overhauser
model should be to yield the exact correlation energy for standard Kohn-Sham density
functional theory. © 2009 Wiley Periodicals, Inc. Int ] Quantum Chem 109: 1950-1961, 2009
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1. Introduction

l( ohn-Sham (KS) density functional theory
(DFT) (see, e.g.,[1]) is a successful method for
electronic structure calculations, thanks to its

Correspondence to: P. Gori-Giorgi; e-mail: gori@Ict.jussieu.fr

Contract grant sponsor: ANR (National French Research
Agency).

Contract grant number: ANR-07-BLAN-0271.

unique combination of low computational cost and
reasonable accuracy. In the KS formalism, the total
energy of a many-electron system in the external
potential V,, = 3,v,,.(r); is rewritten as a functional
of the one-electron density p(r),

Elp] = TJ[p] + f dro, (r)p(r) + Ulp] + E,[p]. (1)

In Eq. (1), T[p] is the kinetic energy of a nonin-
teracting system of fermions (usually called KS sys-
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tem) having the same one-electron density p of the
physical, interacting, system. The Hartree energy
U[p] is the classical repulsion energy, U[p] = % | dr
Jdr'p(r)p(r’)[r —r'| !, and the exchange-correlation
functional E, [p] must be approximated. Minimiza-
tion of Eq. (1) with respect to the spin-orbitals form-
ing the KS determinant leads to the KS equations.
Thus, instead of the physical problem, in KS DFT
we solve the hamiltonian of a model system of
noninteracting fermions, and we recover the energy
of the physical system via an approximate func-
tional.

Despite its success in scientific areas ranging
from material science to biology, approximate KS
DFT is far from being perfect, and many fundamen-
tal issues still need to be addressed. In particular,
KS DFT encounters difficulties in handling near-
degeneracy correlation effects (rearrangement of
electrons within partially filled shells), and in tak-
ing into account long-range van der Waals interac-
tion energies (crucial, e.g., for layered materials and
biomolecules). In principle, all the shortcomings of
KS DFT come from our lack of knowledge of the
exchange-correlation functional, and a huge effort
is put nowadays in trying to improve the approxi-
mations for E, [p] (for recent reviews see, e.g. [2, 3]).

An alternative strategy to overcome the prob-
lems of DFT is range separation: the electron—elec-
tron interaction is split into a long-range and a
short-range part, and the two are treated at differ-
ent levels of approximation [4—-27]. Prof. Hirao has
been a pioneer in this field, investigating the effect
of range separation on the exchange energy with
remarkable success (see, e.g.,[4, 5, 18]).

The variant of range separation that we consider
here [6-17] can be viewed as a way to remove the
constraint that the model system be noninteracting:
instead of the KS system, one can define a long-
range-only-interacting system (whose wavefunc-
tion is thus multideterminantal) having the same
density of the physical system. The remaining part
of the energy is then approximated with a short-
range exchange—-correlation functional. The result-
ing long-range-only hamiltonian, being weakly in-
teracting (and without the electron—electron cusp),
can be treated at a reasonable computational cost
with standard wavefunction methods: in general,
the needed configuration space to achieve good
accuracy is small, and often second-order perturba-
tion theory suffices. At the same time, this long-
range interaction, albeit small, can make the corre-
sponding wavefunction capture near-degeneracy

effects and long-range van der Waals energies. Pro-
vided that the energy functionals are correctly re-
defined, there is no double counting of the energy,
and the method is in principle exact, as it is KS DFT.

As mentioned, this range separated multideter-
minant DFT needs an approximation for the short-
range exchange-correlation functional. One can fol-
low the same path as for KS DFT: start with the
local-spin-density approximation (LSDA), consis-
tently constructed as the difference between the
standard LSD functional and the exchange-corre-
lation energy of an electron gas with long-range-
only interaction [28], and then add gradient correc-
tions (GGA), [11, 12, 14, 29] and eventually meta-
gradient corrections (nGGA). However, this path,
which proved highly successful for KS DFT, may
not be the best for a scheme in which long-range
correlations are explicitly taken into account by
wavefunction methods. Indeed, in most cases there
is no improvement when passing from LSDA to
GGA [11, 12, 30], with the exception of hydrogen-
bonded complexes [31].

In recent years we have extended the “Over-
hauser model,” an approximate method to calculate
the short-range part of the pair density in the uni-
form electron gas, to systems of nonuniform den-
sity [32-35], finding that it yields an accurate de-
scription of the short-range part of the spherically-
and system-averaged pair density (intracule den-
sity) of small atoms. In [35], we have combined the
Overhauser equations with the KS equations in a
self-consistent way, recovering full CI total energies
within 1 mH for the He isoelectronic series. In [34],
we have shown that, unlike all the available corre-
lation functionals [36], the model works equally
well for the high-density limit of the He and the
Hooke’s atom series. Thus, on one hand, the Over-
hauser model seems to be a very good candidate to
construct short-range correlation energy function-
als. On the other hand, we have tested it only on
systems dominated by dynamical correlation: in the
He atom, the Overhauser model yields essentially
the exact KS correlation energy. However, when we
move to systems with strong static correlation we
expect the Overhauser model to be unable to yield
good results. The combination of the Overhauser
model with range-separated multideterminant DFT
seems then natural: it can be viewed as a way to
produce an adapted short-range correlation func-
tional for the range-separated multideterminant
DFT, or as a way to add the description of static
correlation to the Overhauser model.
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In this work we combine the Overhauser model
with range-separated multideterminant DFT, ap-
plying it to the case of the H, molecule along the
dissociation curve, thus analyzing also the case of
strong static correlation, as the dissociation limit is
approached. The article is organized as follows.
After briefly reviewing in Sections 2 and 3 the basic
equations of range-separated multideterminant
DFT and of the extended Overhauser model, we
first analyze in Section 4, using very accurate vari-
ational wavefunctions [37-39], how the “exact”
electron—electron interaction which appears in the
Overhauser model (and that it is usually approxi-
mated with a physically-motivated interaction)
should be as the H, molecule is stretched. This
analysis shows the difficulty of modeling static cor-
relation within the Overhauser model. Because the
model is only able to describe correlation, we com-
bine it with a generalized OEP scheme for multide-
terminant DFT, which is described in Section 5. The
combination of the two methods is then presented
in Section 6, with results for the H, molecule. The
last Section 7 is devoted to conclusions and per-
spectives.

2. Multideterminant DFT via Range
Separation

Hohenberg and Kohn [40] introduced a univer-

sal functional of the density F[p], which can be
written as a constrained minimum search [41],

Flp] = min(¥|T + V,|¥). (2)

V—p

In Eq. (2), the expectation of the kinetic energy

operator T = —1/23V? plus the Coulomb elec-
tron—electron repulsion operator V. = Sijr;

— r|™" is minimized over all antisymmetric wave-
functions yielding the density p. The universality of
the functional F[p] stems from the fact that T and
V.. are the same for every electronic system of given
particle number N = [ p(r)dr. Kohn and Sham [42]
introduced another functional, T[p] of Eq. (1), by
replacing V.. in Eq. (2) with zero,

T.[p] = min(®|T|®), 3)

D—p

and used T[p] for approximating an important part
of Flp]. In Eq. (3), and in the rest of this article, ®
denotes a noninteracting wavefunction (thus in the

majority of cases a single Slater determinant). Sim-
ilarly, we can introduce a functional F{'z[p] for a
long-range-only interaction Wty (here chosen using
the error function, with the real parameter u gov-
erning the cutoff of the short-range part),

. 1 erf(ulr;, — 1))
£ > T (4)

]

LR = 2
i#j

by defining

telp] = min(‘l’“|T +

Wr—p

N 0¥) (5)

in this way we have

limFig[p] = Flp] (6)

p—>0

limF{y[p] = TJp]- (7)

n—0

We can then write the total energy of a given
many-electron system as

E[p] = Ftxlp] + f dr v,(r)p(r)

+ % f dr f arrppe’ P D (s

r—r|

where erfc(x) = 1—erf(x) is the complementary er-
ror function. As in KS DFT then, minimization is
performed over the wavefunction ¥*,

Eo = min[wﬁ + Wi o) + f 1 0,.(D)py,, ()

Y

erfc(ulr — 1))

1
+ 5 fdrfdr’pw“(r)p\y#(r')h_” + E'XLC[PW;L]},

)

where py,, is the density corresponding to W*. Equa-
tion (9) yields an effective, long-range-only-inter-
acting hamiltonian to be solved with a chosen
wavefunction method. The short-range exchange-
correlation functional E¥ [p] is then defined as the
energy needed to make Eq. (8) exact,
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E&[p] = Flp] — Firlp]

- ;J drj e ppe) oD )

r—r|

For instance, the correct LSD approximation to
Exlplis

E¢SP[p] = f p(D){e(py(x),p, () — €lp;(x),p, (1)},

(11)

where €,.(p;(r),p,(r)) is the exchange-correlation
energy per electron of the standard uniform elec-
tron gas (with Coulomb electron—electron interac-
tion) and €.(p; (r),p (1)) is the exchange—correlation
energy per electron of a uniform electron gas with
interaction erf (ury,)/71, [28].

An exact expression for EX[p] is found from the
adiabatic connection formula [16, 43]:

2 o
T—e K 12d7'12
T

Ellp] =J dl—’v,f 477”%2](“’(7’12)

I 0

- ;J § J e ppe) T g

r—r|

where f*(r,) is the spherically and system-averaged
pair density (intracule density) obtained by inte-

grating |W**> over all variables but r, =|r, — 1y,
N(N —-1)
firp) = R

erlZ
J|W”(r12,R,r3, ce ,rN)|2 .

X 2
O1...0N

X dRdr . ..dry, (13)

with R = (r; + r,)/2. The gaussian damping ap-
pearing in Eq. (12) comes from the derivative of the
long-range interaction erf(ur,,)/r,, with respect to
u, and shows that the exchange—correlation energy
is determined by the short-range part of the intrac-
ule density. Notice that when p = 0, Eq. (12) yields
the KS exchange-correlation energy functional
from a nonlinear adiabatic connection [16, 43].

3. The Extended Overhauser Model

The extended Overhuaser model consists in
writing an effective Schrodinger-like equation for
the intracule density f(r,,) of a given system. The
basic idea is the following [32, 33, 35]. We start with
the observation that the intracule density f(r,,) cou-
ples to any electron—electron interaction operator
depending only on the interelectronic distance, W
= 2ijw(r; — 1)), in the same way as the density
p(r) couples to any local one-body potential opera-
tor V = o), ie.,

(\II|W|‘II> = J drlzf(”lz)w(ru)/ (14)

(P|V|P) = f drp(r)o(r). (15)

We can then follow the Hohenberg and Kohn
philosophy but with the roles of p(r) and f(r,,), and
of V.. and V., interchanged. That is, in analogy
with Eq. (2) we can define a system-dependent
functional GIf],

G[f] = min (¥|T+ V., |P), (16)

V—f

so that the total energy of a given physical system is
equal to

E[f] = G[f] + fdruf(:u). (17)

Like KS, we can define another functional by
setting V.. equal to zero in Eq. (16),

T{f] = min(¥|T|¥). (18)
Y—f

The functional T [f] corresponds to the internal
kinetic energy of a free (zero external potential)
cluster of fermions having the same intracule den-
sity of the physical system. The fermions of this
cluster interact with an effective interaction w(r1,)
which has the same role of the KS potential for the
KS system. In practice, this effective interaction
must be approximated. Moreover, for N > 2 elec-
trons the cluster equation becomes a complicated
many-body problem, so that other approximations

VOL. 109, NO. 9 DOI 10.1002/qua
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are needed. As in the original Overhauser model
for the uniform electron gas [44, 45], we can approx-
imate the cluster equation with a set of radial gemi-

nals g(r12),

1 d* (L +1)
- rudrfz; 12 7%2 + Werr(r12) gi(hz) = Eigi(rlz)r

E 191-|gi(hz)|2 :f(rlz), (19)

whose occupancies ¥; must be defined (e.g., in a
determinantal-like way as in the original Over-
hauser model [45]). In practice, trying to solve the
whole many-electron Schrodinger equation by
means of Egs. (17)—(19) is a daunting task. The idea
is rather [32, 33, 35] to couple this “average-pair-
density-functional theory” with a density func-
tional scheme: Egs. (19) can be generalized to any
f*(r1,) along the adiabatic connection of DFT. In
[32, 35], we started from the effective interaction
w&Z(r1,) that, when inserted in Egs. (19), gives the
intracule density corresponding to the KS system,
fxs(r1p) (that can be obtained from the KS determi-
nant). We then wrote an approximation for whg(r;,)
along the long-range adiabatic connection of DFT as

whie(r) = wﬁ(”lz) + wef (o). (20)

The only term that needs to be approximated is
then wgf(ry,), an effective interaction that should
essentially “tell” to the intracule density that, while
the electron—electron interaction is turned on (i.e. as
p increases), the one-electron density p(r) does not
change. As the information on p(r) has been
“washed away” in the integration over the center of
mass R of Eq. (13), this constraint can be imposed
only in an approximate way. For two-electron at-
oms, for which Eq. (19) is exact with one geminal
[33], ¢ = Nﬁ', a simple approximation for wgff(ry,) is
[32, 34, 35]

on erf(pr) 477_3 ! erf(u|r12 - XD
Wt (rp) = - ?7’5 P

dax
|r12 - x| ’

T1p

‘x|£7;

(21)

where 7, is a screening length associated to the
radius of a sphere containing on average one elec-
tron [44—46]. The physical idea behind Eq. (21) is to
mimic the constraint of fixed one-electron density
by screening the electron—electron interaction over

a length associated to the “space” available to each
electron (which is determined by the density). In-
deed, for the He isoelectronic series Egs. (12), (19),
and (21), combined self-consistently with the KS
equations, recover the full CI total energy within 1
mH [32, 34, 35].

4. The Overhauser Model for the H,
Molecule: How Things Should Be

For a closed-shell physical electronic system
(atom, molecule) with N = 2 particles, the Schrod-
inger equation describing the internal degrees of
freedom of a cluster of fermions having the same
intracule density f(r;,) is exactly given by [33-35]

2

1d
- m”u + weff(rlz)] \/f(”iu) = 8\]@- (22)

As a first study, we calculate and analyze the
“exact” Overhauser interaction w.(r,) at full cou-
pling strength (i.e., for electron—electron interaction
1/74,, corresponding to w = %) for the H, molecule
at different values of the internuclear distance R,
and we compare it with the approximation of Eq.
(21). To this purpose, we need extremely accurate
intracule densities f(r,), which are described in the
Section 4.1.

4.1. INTRACULE DENSITIES FROM
ACCURATE VARIATIONAL WAVEFUNCTIONS

We use the accurate variational wavefunctions of
[37-39], which are expanded in explicitly correlated
gaussian geminals,

K

W(r,r,) =1+ plz)(l + fe)Z ailr,r)  (23)
k=1

(1, 1) = e ey (24)

where r,;, and rg; are centers that lie on the internu-
clear axis, P;, means permutation of r; and r,, and 7, is
the inversion operator with respect to the center of the
molecule. The parameters appearing in Egs. (23) and
(24) are determined variationally by minimizing the
energy with the conjugate gradient method (for more
details on the wavefunction and the algorithms em-
ployed, see [37-39].). The expansion length K = 1200
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FIGURE 1. Intracule densities f(r,,) for the H, molecule at different internuclear distances R for the physical system
(from the accurate variational wavefunction described in Section 4.1) and for the KS system (from the density corre-

sponding to the same accurate variational wavefunctions).

in Eq. (23) is used, resulting in energies with the
extraordinary accuracy of 10~ '* Hartree.

The intracule densities f(r,,) from these extremely
accurate wavefunctions can be easily calculated, be-
cause all the needed integrals are analytic. We also
calculated the one electron densities p(r), and the in-
tracule densities fig(r1,) corresponding to the KS sys-
tem, which can be obtained by inserting in Eq. (13) the
KS wavefunction 1/ 2\,7p(7r1) \];Trz). In Figure 1, we
show the intracule densities f(r,) and fis(r;,) for the
internuclear distances R = 1.4, 3.0, 4.5, and 6.0 a.u.
Although mathematically the wave function of
Eqgs.(23)—(24) is cuspless, we see that the very elabo-
rate ansatz permits to describe the exact linear behav-
ior of the intracule density for r;, — 0, up to extremely
short distances. Figure 2 shows the same quantities
multiplied by the volume element 4777,. This figure
better visualizes the transition from dynamical to
static correlation. In Figure 3, we also report the same
quantities in the extreme stretched case, R = 20, ob-
tained from the simple Heitler—London wavefunc-
tion.

4.2. ACCURATE OVERHAUSER POTENTIALS

From the accurate intracule densities of the
previous subsection we can calculate, by inversion,

the corresponding “exact” Overhauser interaction
weff(rlz)/

(112 NM) + const. (25)

Weer(r1p) = ————5
eif(T12) \UC] (r1)"12d11

The inversion of Eq. (25) is done numerically, by
finite differences. In Figure 4, we report the effec-
tive Overhauser interactions that, when inserted in
Eq. (22), give the physical and the KS intracule,
corresponding, respectively, to w = @ and w = 0
along the long-range adiabatic connection of Sec-
tion 2 (or to A = 1 and A = 0 along the usual linear
adiabatic connection in which V., is simply multi-
plied by A). We see that w, (r1,) for large r;, goes to
the same constant for both the KS and the physical
system, as it should be [35] (of course if we go to too
large r,, we start to observe the wrong harmonic
wall due to the gaussian asymptotic decay of our
wavefunction). The difference between the effective
Overhauser interaction for the physical and the KS
system gives wgf~ = wey of Eq. (20), and is re-
ported in Figure 5, where also the Coulomb repul-
sion 1/r, is shown. From this figure, we see that,
when the system is still dominated by dynamical
correlation, as in the case R = 1.4 and R = 3, wi(r1,)
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FIGURE 2. The same intracule densities of Figure 1 multiplied by the volume element 47r2,,.

is essentially a screened Coulomb interaction. That
is, for short-range it behaves as 1/r,, and then for
large 1, goes to zero much faster than 1/7;,. In such
cases, the approximation of Eq. (21), which at p = %
reads

0.35 —
physical
03 r KS 1
<~ 025 ¢+ 1
= 02|, ]
N i
N 015 [t 1
B Y
< 011 \ R=20 1
0.05 f :

0 5 10 15 20 25 30
12

FIGURE 3. The intracule density f{r,,) multiplied by
the volume element 4xr%, for the H, molecule in the
extreme stretched case R = 20. The physical f(r,,) has
been calculated from the simple Heitler-London wave-
function, and fs(r;,) from its corresponding density.

w° (T ) — i + L%Z _ i Tin =7
eff\/ 12 12 2?2 er 12 s (26)
Weee(r2) = 0 12 > Ty

can work reasonably well, with a screening length
7, ~ R. However, as R grows and the system starts
to be dominated by static correlation, we see that
the approximation of Eq. (26) cannot work: the
“exact” weg(ry,) still decays much faster than 1/r;,
for large ry,, but at short range is more repulsive
than the Coulomb interaction! i.e., we need an
“overscreened” interaction. This is completely evi-
dent in the extreme stretched case R = 20 of Figure
6, again obtained from the simple Heitler-London
wavefunction.

5. Generalized Optimized Effective
Potential Method for
Multideterminant DFT

In recent years, the focus of a large part of the
scientific community working on improving the ap-
proximations for E, [p] has shifted from seeking ex-
plicit functionals of the density (like the generalized
gradient approximations), to implicit functionals, typ-
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FIGURE 4. The “exact” effective Overhauser interaction w«(r,,) for the intracule densities of the physical and of the
KS systems of Figure 1.
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FIGURE 5. The difference wi«(r,,) between the “exact” effective Overhauser interaction for the intracule density of
the physical and of the KS systems of Figure 4. The Coulomb repulsion 1/r,, is also reported.
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FIGURE 6. Same as Figures 4 and 5 for the extreme
stretched molecule, using the simple Heitler—London
wavefunction.

ically using the exact exchange E,[p], which is only
explicitly known in terms of the KS orbitals ¢;(r). The
corresponding KS potential must then be computed
with the optimized effective potential (OEP) method
(for a recent review, see [47]). The OEP scheme can be
generalized to the multideterminant range-separated
DFT by first noticing that we can divide E{_[p] into
exchange and correlation in two different ways [10]:
we can define the exchange energy with respect to the
KS determinant ®,

Ef[ﬂ] = <(I)|Vee - WER|CI)>

- f dr f ar’ ptoper D o

v —r|

and then define the usual correlation energy func-
tional EX[p] as the energy missed by the KS wave-
function,

El[p] = Eilp] — Et{p], (28)

but we can also define a multideterminantal (md)
exchange functional [10] by using the wavefunction
v,

Eik,md[p] = <’\PM|VEE - WﬁR|\IﬂL>

_ % fdrjdr’p(r)p(r’)erfc(mr_r’b, (29)

v —r|

and then a corresponding correlation energy that
recovers the energy missed by W* (which is smaller
than the energy missed by the KS determinant ®),

Eﬁmd[p] = Eﬁc[P] - E::,md[p]' (30)

Then, with this latter definition of the correlation
energy, the generalized OEP-like scheme for multi-
determinant DFT becomes [10]

EO = lnfv#{<\Pg#|T + Vee + Vne|\I’1‘)L#> + Egmd[p‘lfﬁfu]}l
(31)

where W}, is obtained by solving the Schrodinger
equation corresponding to the hamiltonian

At =T+ Wi+ U, Ur= D v*r). (32)

Notice that this multideterminant OEP scheme is
different from the one recently proposed in [48]. In
Eq. (31), the weak long-range interaction W} auto-
matically selects the configuration space needed to
yield an accurate solution for the hamiltonian H* of
Eq. (32), whereas in [48], the configuration space is
chosen essentially by hand, using physical and
chemical intuition. In fact, when the KS system is
degenerate or near-degenerate, even a weak inter-
action (i.e., in our case, a small w) is able to capture
the near-degenerate configurations. At the same
time, if we choose a small value of u, the configu-
ration space needed to yield an accurate description
of W* is small, and often the few near-degenerate
states are enough. This is shown quantitatively,
e.g., in Figure 3 of [8], for the case of the Be atom.

In the next Section 4, we use the Overhauser
model to approximate E* i[p], and we apply our
combined formalism to the case of the H, molecule.
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6. Multideterminant DFT Combined
With the Overhauser Model

From the adiabatic connection formalism we can
easily write an exact formula for E¥_,[p],

E?,md[P] :J dIL’J 47””%2[]‘”(7’12)

I 0

2
—f“(rlz)]fref“ iz (33)
V

which shows that EY p] is determined by the
change in the short-range part of the intracule den-
sity when the electron—electron interaction in-
creases from erf(ury,)/r1, to the full Coulomb re-
pulsion 1/r4,. By adding and subtracting fxs(715),
Eq. (33) can also be written as

Egmd[P] = E#[P] - j 4777’%2[]‘“(7’12)

0

- st(rlz)]ﬂfC:fjillz)drlzr (34)

where E![p] is the correlation energy of Eq. (28),
defined with respect to the KS determinant.

We computed f*(r;,) within the Overhauser
model, Eq. (19) with one geminal ¢ = /f, using the
simple screened potential of Egs. (20) and (21) with
the screening length 7, = R. For each internuclear
distance R, the intracules f*(r;,) have been calcu-
lated for 33 values of u between w = 0.01 and p =
20. By numerical integration we then computed

dE![p]
I B

o ’ .
J 4777’%2[](#(7’12) _st(T’lz)]T—e_“ "2dry,
0 NT
(35)

and we fitted the values of 9E¥[p]/d, with the de-
rivative of the function

a0 ap® Fap” +aap® +au’?
EC[P] - W - (1 + bZMZ)S 7

(36)

which has the correct asymptotic behaviors [49].
We also computed, again by numerical integration,

the second term on the right-hand-side of Eq. (34) in
order to obtain E¥,_ 4[p].

We then implemented the generalized OEP
scheme of Eq. (31) by first minimizing the effective
potential v*(r) at the “generalized-exchange” -only
level, and by adding E%, 4[p] only as a final correc-
tion. Because E¥,,4[p] is very small, we do not expect
substantial changes by implementing a full self-
consistent scheme. Our procedure can be summa-
rized with the equation

EO = (lnfv»‘<\lign|’j—' + Vee + Vne|qjgu>) + Egmd[p‘l/fu‘#]/ (37)

where E,j[py+] is calculated with the final density
resulting from the minimization in the first term on
the right-hand-side of Eq. (37).

To carry out the minimization with respect to the
potential v*(r) in Eq. (37) we proceeded as follows.
We parametrized the potential v*(r) with a simple
two-parameter form, by adding to the physical ex-
ternal potential a gaussian centered on each atom,
ce” ™. The minimization of the expectation (¥%|T

+ Ve + VW) with respect to the two param-

eters ¢ and vy is done by calculating at each step
full-CI wavefunctions V!, for the hamiltonian with
electron—electron interaction erf(ury,)/r, and ex-
ternal potential v*(r). All calculations were done at
the cc-V5Z basis-set level. We also produced with
MOLPRO [50] full CI reference results for the phys-
ical hamiltonian, for comparison. Our simple pa-
rametrization of the potential v*, containing only
two parameters, is enough to yield at u = 0 the HF
energy within 0.5 mH, which is the accuracy we
sought in this study. This way, we avoid all the
well-known problems of the OEP method in finite
basis set [51] at the price of obtaining only an upper
bound for our minimization problem (yet, with the
reasonable accuracy of 0.5 mH).

In Figure 7, we report the results for E¥_ ,[p] for
three different values of the internuclear distance R.
The dots (@) are the “exact” values of E, 4[p], ie.,
the full-CI total energies obtained with MOLPRO
minus the energies corresponding to the first term
on the right-hand-side of Eq. (37), inf.(V4|T

+ Vee + Vol¥2). The solid line is EX, [ p] from the
Overhauser model, and the dashed line is the LDA
result, obtained from the parametrization of [28], in
which E¥, 4[p] for the uniform electron gas has been
calculated with Quantum Monte Carlo methods.
We see from this figure that when the system is still
dominated by dynamical correlation, as in the R =
1.4 and the R = 2 cases, the Overhauser model
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FIGURE 7. The short-range correlation energy for range-
separated multideterminant DFT as a function of the cutoff
parameter w for the H, molecule at three different values of
the internuclear distance R. Dots (@) are “exact” values (see
text in Section 6), solid lines are the results from the Over-
huaser model, and the dashed lines are the LDA values.

yields, even at u = 0 (i.e. for pure KS DFT), corre-
lation energies with errors of ~ 5 mH (while LDA is
off by ~ 60 mH), which reduce to 1 mH at u = 0.5

(where the LDA error is still ~ 10 mH). We focus
here on the value u ~ 0.5 because it is the one
commonly used in practical applications [9-15].
When the system starts to be dominated by static
correlation, as in the R = 4 case, the Overhauser
model with the simple screened potential of Eq. (21)
gives, at u = 0, errors very close to those of LDA
(~20 mH), which are still of the order of ~10 mH at
w = 0.5. As the molecule approaches the dissocia-
tion limit, R — o, the exact E! 4p] tends to the
limiting behavior in which E* {[p] = EN[p], and
E!.dlp] = 0 for any w > 0. This is due to the fact
that, as R — =, the long-range only wavefunction
W, even at very small w (i.e., with an infinitesimal
interaction), becomes essentially exact and equal to
the Heitler-London wavefunction, so that the func-
tional should be just equal to zero. In this limit, the
Overhauser model is wrong for small u (because, as
explained in Section 4, it misses the “overscreen-
ing” at short range), but, for u >> 0, yields E% 4[p]
that go to zero much faster than LDA, as it can be
already grasped from the third panel of Figure 7. It
is thus still more suitable than LDA to be combined
with the range-separated multideterminant DFT,
but it definitely needs some improvement.

Notice that the Overhauser model would yield
much more accurate results if we were able to com-
pute E*.4[p] by using in Eq. (20) instead of wk3(r,,)
the interaction wl(ry;) which yields the intracule
fH(rq,) associated to the wavefunction W*. This way,
we would use the information available in W* to the
maximum extent, and we would not have the prob-
lems associated to the “overscreening” discussed in
Section 4. This possibility will be investigated in
future work.

7. Conclusions and Perspectives

We have presented a preliminary study of the
combination of range-separated multideterminant
DFT with the Overhauser model, with an application
to the paradigmatic case of the H, molecule. We have
first analyzed, by means of very accurate variational
wavefunctions, the failure of the Overhauser model in
describing static correlation and we have then used it
to produce an adapted short-range correlation func-
tional for range-separated multideterminant DFT.
The results are very good for internuclear distances
close to equilibrium, and are still encouraging as the
molecule is stretched. Indeed, in the dissociation limit
the exact short-range correlation functional should go
to zero for any pu > 0, and the Overhauser model
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yields short-range correlation energies that go to zero
faster than LDA as p increases.

Future work will address the study of better
approximations for the unknown Overhauser elec-
tron—electron interaction, and the development of a
more efficient scheme to combine it with range-
separated multideterminant DFT.
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