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#Laboratoire de Chimie Theórique, UMR7616, UPMC Univ Paris 06, F-75005 Paris, France

*S Supporting Information

ABSTRACT: The performance of a method is generally measured by an assessment of the
errors between the method’s results and a set of reference data. The prediction uncertainty is a
measure of the confidence that can be attached to a method’s prediction. Its estimation is
based on the random part of the errors not explained by reference data uncertainty, which
implies an evaluation of the systematic component(s) of the errors. As the predictions of
most density functional approximations (DFA) present systematic errors, the standard
performance statistics, such as the mean of the absolute errors (MAE or MUE), cannot be
directly used to infer prediction uncertainty. We investigate here an a posteriori calibration
method to estimate the prediction uncertainty of DFAs for properties of solids. A linear
model is shown to be adequate to address the systematic trend in the errors. The
applicability of this approach to modest-size reference sets (28 systems) is evaluated for the
prediction of band gaps, bulk moduli, and lattice constants with a wide panel of DFAs.

1. INTRODUCTION

The success of density functional theory, of modern algorithms
and computers has produced not only a large amount of
numerical results but also a large number of density functional
approximations (DFA). To choose among those, benchmark
data sets are increasingly used. Although this should be seen as
a quantification of experience, one should be also warned that
using statistical tools to quantify DFAs performance has its
pitfalls, and care is needed.1

If ranking is a concern for DFA designers to assess the overall
performance of new developments, it is less practically useful to
end users, who need to select a method with criteria such as
code availability, computing performance, and most important,
prediction uncertainty. The latter provides a confidence measure
on the results of a DFA for a given property. If, in addition to
performance statistics, users are informed of the prediction
uncertainty of DFAs, they might have a better rationale to
select a method satisfying their specific requirements.
The definition of prediction uncertainty for computational

chemistry methods has been formalized by Irikura et al.2 in the
virtual measurement (VM) framework. The interest of VM is to
define a statistical approach in agreement with international
standards for the evaluation of measurement uncertainty, as
recommended by the Guide to the Expression of Uncertainty in
Measurement (GUM).3 The VM approach has been adopted by
the National Institute of Standards and Technology (NIST),
notably for its Computational Chemistry Comparison and

Benchmark Database (CCCBDB).2 The VM framework has
been reported in the computational chemistry literature mostly
to estimate prediction uncertainty for scaled harmonic and
anharmonic vibrational frequencies and zero-point ener-
gies.2,4−10 Recently, Ruscic11 strongly recommended its use
to improve the uncertainty evaluation of predicted thermo-
chemical quantities. The interest of this approach has also been
demonstrated for molecular simulation.12−14

In the GUM approach to uncertainty estimation, “it is
assumed that the result of a measurement has been corrected
for all recognized significant systematic effects and that every
effort has been made to identify such effects”.3 This is a key
point that is challenging for computational chemistry, where
most error sources are known to be systematic, due to the
various approximations in the chemistry models. The
correction of systematic errors can only be achieved by
comparison with reference data. The assessment of a prediction
uncertainty requires therefore either an internal calibration
(adjustment of parameters) of a method against a reference
data set or an a posteriori calibration of the results of this
method. We address the latter approach in this article.
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The internal calibration of semiempirical DFAs followed by
propagation of the uncertainty on calibrated parameters to
predictions has been sparsely reported,15−17 and recently
applied to computational catalysis.18,19 Few studies along
similar lines have also been reported for molecular simulation
force fields.20−22

In the a posteriori approach, calibration is used to remove the
predictable part of the errors (systematic errors). Prediction
uncertainty for a method is then derived from the remaining,
unpredictable part of the errors (random errors).3 In the
aforementioned vibrational frequency applications, correction
of systematic errors is done through the scaling of the
calculated data, and the root-mean-square of the errors
(RMSE) of scaled vibrational frequencies has been shown to
provide, under mild conditions, a good approximation of
prediction uncertainty.8,9 This scaling approach has been used
recently by Lejaeghere et al.23 to estimate the prediction errors
of solid state DFAs for elemental crystals. As will be shown
below, two points need to be addressed to complement these
scaling studies for other systems and properties: (i) the
calibration model cannot always be reduced to a simple scaling,
and (ii) the reference data uncertainties are not always small
enough to be neglected in the statistical analysis.
We present therefore a detailed derivation of prediction

uncertainty of computational methods by a posteriori calibration
in a more general framework than for a single scaling factor,
moreover taking into account the uncertainty on the reference
data. The method is applied to the calculation of lattice
constants, bulk moduli, and band gaps for a set of 28 crystals
(semiconductors and insulators) with cubic symmetry, by 18
different DFAs (local, semilocal, and hybrid).
The paper consists of four main sections. In the first part, we

present the difficulty of deriving prediction uncertainty from
common performance statistics provided in the benchmark
literature and the need to design a specific approach. In the
second part, we illustrate a typical distribution of errors
observed in the application cases and derive an adequate
stochastic calibration/prediction model. In the third section, we
apply the calibration/prediction model to the reference data
and study its validity. Discussion of the advantages and
limitations of the VM approach in the context of this study is
the object of the fourth section.

2. METHOD PERFORMANCE EVALUATION

Performance evaluation of computational chemistry methods
relies on two ingredients: a benchmark data set used as a
reference to assess calculation accuracy, and performance
statistics on the differences between calculations and reference
data (see, e.g., Peverati and Truhlar24 for a recent review). Both
ingredients play a crucial role in performance assessment.
2.1. Definitions. We thereafter call error the difference

between the value of a property, cm,s, calculated for a system s by
a method (e.g., DFA) m, and the corresponding reference
value, os (observed or calculated):

= −e c om s m s s, , (1)

For performance assessment of a method, one uses statistics
summarizing the error sets containing the error values of all
systems for a given method, Em = {em,s; s = 1, Ns}, where Ns is
the number of systems in the reference set.
In the following, we consider deterministic methods and

assume that all sources of code uncertainty are controlled at a

negligible level (numerical errors, convergence thresholds
effects, etc.2).
In this case, the errors can be attributed (i) to reference data

uncertainty, us, and if this source alone cannot explain the
amplitude of the errors, (ii) to method inadequacy errors,
characterizing the inability of a method to predict the reference
data within their error bars. The uncertainty of the reference
data is therefore a key piece of information to properly assess
method inadequacy errors.

2.2. Performance Estimators: MAD vs MAD. Several
performance statistics are commonly used in the benchmark
literature to rank methods. We review these estimators to
appreciate their usability, or lack thereof, in the estimation of
prediction uncertainty.
First, there is some confusion in the computational chemistry

literature about the nomenclature of the performance statistics.
In particular, the use of some acronyms conflicts with the
standard use in the statistical literature. The main example is
the mean absolute deviation (MAD), which is commonly used
in the community to refer to the mean of the absolute errors
(MAE)

∑= | |
=N

eMAE
1

s s

N

m s
1

,

s

(2)

whereas for statisticians25 MAD is a measure of dispersion
around a reference point, either the mean absolute deviation
(from the arithmetic mean E̅m),

∑= | − ̅ |
=N

e EM[ean]AD
1

s s

N

m s m
1

,

s

(3)

or the median absolute deviation (from the median med(Em))

= | − |E EM[edian]AD med( med( ) )m m (4)

Synonyms of MAE in the computational chemistry literature
are the mean unsigned error/deviation (MUE/D) and the
average absolute error/deviation (AAE/D). The occasional
occurrence in this corpus of a meaningless definition of MAD
as mean average deviation is even more confusing.26

The arithmetic mean is often referred to as mean signed
error (MSE)

∑= ̅ =
=

E
N

eMSE
1

m
s s

N

m s
1

,

s

(5)

Uncertainty is defined in the International Vocabulary of
Metrology27 as a “non-negative parameter characterizing the
dispersion of the quantity values being attributed to a
measurand“. With regard to this definition, it is important to
acknowledge that MAE and MeanAD are different statistics:

• MeanAD is a measure of dispersion (for a normal
distribution of standard deviation σ, one has MeanAD =
2/πσ1/2.

• For E̅m = 0, MAE and MeanAD are identical, but when
E̅m ≠ 0, MAE is a non-invertible mixture of dispersion
and location statistics. In the extreme case where all
errors are positive, MAE is equal to MSE, a measure of
location.

In a recent paper intended on clarifying the difference
between MAE and prediction uncertainty, Ruscic11 addresses
MAE (called MAD in the paper, but unambiguously
synonymized with MUE) as a dispersion measure, which it is
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not for non-zero-centered error samples, the standard case in
computational chemistry. The MAE can be used, among many
other criteria, to rank methods but should not be used to assess
the uncertainty associated with a given method.
The same remarks apply to the root-mean-square error

(RMSE)

∑=
=N

eRMSE
1

s s

N

m s
1

,
2

s

(6)

which is commonly used alongside the MAE in the benchmark
literature. The corresponding measure of dispersion is the root-
mean-square deviation (RMSD)

∑= − ̅
=N

e ERMSD
1

( )
s s

N

m s m
1

,
2

s

(7)

The equality

= +RMSE RMSD MSE2 2 2 (8)

clearly shows the RMSE as a mixture of location and dispersion
measures. The interest of RMSE in the context of performance
measures is also disputed, because of the better robustness of
MAE to outliers, but the debate is ongoing.28,29

2.3. From Performance Estimators to Prediction
Uncertainty. If an error set is affected by a constant (i.e.,
system-independent) systematic contribution, then the MSE
estimates the mean value of the systematic error, and the
RMSD provides the standard deviation of the remaining
(random) part of the errors. In the case of a negligible
contribution of the reference data uncertainty, the RMSD and
the uncertainty on the MSE could then be combined to
estimate a prediction uncertainty.
As will be illustrated in the next section, DFAs do not

generally produce only constant systematic errors.23 Additional
corrections are necessary to access the random contribution of
the errors. Moreover, dispersion statistics (MeanAD and
RMSD) are not always provided in the benchmark literature,
preventing the estimation of prediction uncertainty from
existing benchmarks. An exception is for scaled harmonic
frequencies, where the RMSD of scaled frequencies is generally
available.9,30

An additional issue with the MAE and RMSE estimators is
that they do aggregate reference data uncertainty with the
errors due to the method. If the reference data uncertainty is
not negligible before method inadequacy, these estimators, as
they do not average out the random reference data errors,
underestimate method performance. The applicability of MAE
and RMSE requires therefore the use of high-accuracy reference
data,11,31 which might be a severe restriction for some
properties.
We show in the following how to circumvent these

difficulties in a practical way and estimate prediction
uncertainty by statistical modeling of the errors.
2.4. Some Issues in the Use of Benchmark Data Sets.

Besides the requirement for high-quality data in the reference
sets, one can be confronted with more challenging issues: the
experimental data do not necessarily reflect the best, exact
reference to be used. There are several reasons for this:

1. The calculated quantities do not necessarily correspond
to the experimental data. This can be the case for the
fundamental band gaps, see, e.g., Civalleri et al.1

2. The theoretical method is not necessarily supposed to
provide the quantity analyzed (Kohn−Sham orbital
energies, even exact, are not supposed to provide
fundamental band gaps32−34).

3. The experimental data are subject to factors that are not
properly taken into account (e.g., temperature, in
particular for bulk modulus).

4. The inclusion of the systems into the benchmark data set
is conditioned to data availability, which introduces a bias
in the representativity of the data set.

3. PREDICTION UNCERTAINTY ESTIMATION
To estimate a prediction uncertainty, a four-step procedure is
used:

1. build and validate a statistical model of the errors from
the benchmark set (calibration model),

2. evaluate the uncertainties of the parameters involved in
this model,

3. propagate the uncertainties of the parameters in the
calibration model to the prediction model, and

4. validate the prediction model.

Validation in steps 1 and 4 is necessary to ensure that
calculated values and reference data agree within the error bars
defined by the calibration or prediction model. One generally
faces the case where reference data uncertainty alone cannot
explain the errors amplitude, and corrections to the calibration
model have to be done, either by updating its deterministic part
(representing the systematic errors) or its stochastic part
(representing the random errors).

3.1. Distribution of Errors. Designing a statistical model
requires us to examine the data and their distribution. We
illustrate the process on the case of the B3LYP DFA for lattice
constants (LC), extracted from the full application set
described in section 4.1. This example is well representative
of the other cases considered in the present article.

3.1.1. Systematic and Random Errors. Figure 1a displays a
scatter plot of the reference data vs the calculated data. One
observes that the points are grouped along a line that is not the
identity line. This is evidence of the presence of systematic
errors and of a trend in the systematic errors, which in this case
increase as a function of the calculated property value.
Plotting the errors (set ELC,B3LYP) against the calculated

values (Figure 1b) reveals more clearly the trend: the errors
increase more or less linearly with the value of the lattice
constant and have a non-null mean value. The orange line
represents the least-squares linear fit of the errors. The MSE
and MSE ± RMSD values of these data are represented by
horizontal full and dashed lines, respectively.
The trend line represents a systematic effect (a deterministic

contribution) in the errors, which has to be corrected before we
can estimate the random contribution on which the uncertainty
estimation is based.3 The corrected errors, obtained by
subtraction of the least-squares regression line are shown in
Figure 1b (triangles) and present a zero-centered, more or less
symmetrical distribution. One can see that they do not present
any obvious trend. Moreover, their RMSD is smaller than for
the uncorrected errors.
Histograms of the errors before and after linear correction

can be compared in Figure 2. It is interesting to contrast the
width of the corrected distribution (about 0.02 Å) with the
typical measurement errors on lattice constants, which are
considered to be an order of magnitude smaller (about 0.001 Å,
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see section 4.1). One has thus to face the fact that, even after a
linear correction, the B3LYP DFA cannot predict the reference
data within their uncertainty range.

3.1.2. From Deterministic Calculations to Random Errors.
Considering the very small uncertainty on lattice constants, the
errors in the ELC,B3LY P set can be mainly attributed to the
method’s inability to reproduce reference data and can be
decomposed in Figure 1 into predictable/systematic and
unpredictable/random contributions. In the following, we will
refer to the random part of method inadequacy as method
inadequacy error, the systematic part being addressed through
corrections.
The method inadequacy error has a random-like trace as a

function of lattice constant value (Figure 1b), despite the fact
that the model chemistry (i.e., method and basis set)
calculations are deterministic.23 This is not truly a random
process, in the sense that repeated calculations with a model
chemistry for the same systems would provide the same values,
but its variation with the lattice constant value is practically
unpredictable without doing the calculation. Moreover, for a
given basis set, this random contribution is irreducible without
changing the DFA or splitting the reference data set (if it
appears heterogeneous).
The method inadequacy error represents therefore our lack

of knowledge on the prediction of properties of new systems,
due to the use of an approximate method, and to some extent,
of a limited reference data set.
This pattern can be exploited to define and estimate

prediction uncertainty by modeling method inadequacy error
by a random variable, as detailed in the next section.

3.2. Calibration/Prediction Statistical Modeling. In this
section we present the implementation of the VM framework
by an a posteriori calibration model, enabling us (1) to correct
for the systematic errors of a method, (2) to evaluate the
method inadequacy uncertainty, and (3) to estimate the
prediction uncertainty of the calibrated method.

3.2.1. Calibration. Let us start with the simplest statistical
model linking the calculated values (cm,s) and the uncertain
reference values (os ± us)

= + ϵ =o c s N( 1, )s m s s s, (9)

where the ϵs are independent random variables of mean 0 and
known, finite, standard deviation us. This model is a general-
ization of eq 1: it uses random variables ϵs to describe stochastic
processes from which one assumes that the actual errors em,s are
realizations.
In most cases of interest in the present study and many

others, this model is invalid, in the sense that the values
calculated by a given DFA are not compatible with the
reference values within their uncertainty range.35

To get a valid calibration model, one has to account for the
structure of the errors set. A systematic trend observed in the
error sets of the benchmark data can be corrected by a
transformation of the calculated values cm,s, providing a new
(calibration) model

ϑ= + ϵo f c( ; )s m m s m s, (10)

where ϑm represents the set of parameters defining fm. The
functional form and parameter values of fm are method-
dependent. It is important for the prediction ability of the
model to choose a functional form that does not overfit the
data. One can always find a high-degree polynomial fitting

Figure 1. Structure of the errors for lattice constants calculated by the
B3LYP method: (a) Reference vs calculated data (bullets), the least-
squares regression line through the points is the orange/solid line, and
the black/dashed line represents the identity line. (b) Errors vs
calculated values, before and after linear correction. A linear trend
(orange line) can be assigned to a systematic (predictable) component
of the initial errors. The horizontal lines in (b) represent the MSE (full
line) and MSE ± RMSD (dashed lines) of the corresponding data sets.

Figure 2. Distribution of errors obtained using the B3LYP functional
to predict lattice constants, before and after linear correction of
systematic errors. The histograms are produced by distributing the
data into bins of 0.02 Å.
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exactly all points in the errors set. However, this kind of
correction has no generalizability; i.e., it performs poorly at the
prediction stage. Low-order polynomials or functions with few
parameters (compared to Ns) should be preferred.
After optimization of the parameters ϑm (ϑ̂m represents the

set of optimal parameters), the validity of the model depends
on the comparison between the residual errors

ϑ= − ̂r o f c( ; )m s s m m m, (11)

and the reference data uncertainties us. In the least-squares
optimization framework, one compares the χ2 value

∑χ =
=

⎛
⎝⎜

⎞
⎠⎟

r

us N

m s

s

2

1,

,
2

s (12)

to the number of degrees of freedom ndf = Ns − Nϑ, where Nϑ is
the number of free parameters in fm.

36,37

If χ2 ≃ ndf, the corrected model can be considered as valid,
and the prediction uncertainty will be limited to the parametric
uncertainty of the correction function, as defined below (eq
16).
In most practical cases, however, the reference data

uncertainties are small compared to the residual errors, which
invalidates this calibration model (χ2 ≫ ndf). If the residual
errors still present discernible trends, the correction function fm
has to be updated.
If the residual errors rm,s present a random-like pattern, for

which no further deterministic correction appears suitable, one
introduces a new stochastic term δm, to describe the dispersion
of the errors in excess of the reference data uncertainty, which
we attribute to method inadequacy

ϑ δ= + ϵ +o f c( ; )s m m s m s m, (13)

where δm is a random, unpredictable, variable of mean 0
(systematic errors are corrected by fm) and unknown, finite,
standard deviation dm. The value of dm is estimated to ensure
the statistical validity of eq 13.
Practically, dm

2 can be chosen as the difference between the
variance of the residual errors rm,s and the mean variance of the
reference data (Appendix). With this choice, the corrected
calculated values and the reference data are compatible within
the combination of their respective error bars.
3.2.2. Prediction. For the estimation of a new value of a

property knowing a calculated value c* (i.e., for a system not in
the benchmark set), the prediction model and prediction
variance are3

ϑ δ* = * ̂ + ̂p c f c( ) ( ; )m m m m (14)

ϑ* = * ̂ +u c u c d( ) ( ; )p f m m
2 2 2

m m (15)

where δm̂ ≡ 0 has been left in the prediction model as a
reminder of the occurrence of dm

2 in the prediction variance.
The term ufm(c*;ϑ̂m) represents the parametric uncertainty

on the value of the function fm at c*. This contribution results
from the uncertainty in the optimal parameters set due to the
stochastic terms in eq 13. For functional forms of fm linear in
ϑm or showing weak nonlinearity on the variation domain of
ϑm, it can be estimated by combination of variances3,38

ϑ* ̂ = Σϑu c JJ( ; )f m
2 T 2

m m (16)

where J is a vector of sensitivity coefficients evaluated at ϑm =
ϑ̂m,

ϑ

ϑ
=

∂ * ̂

∂ ̂
ϑ ̂

J
f c( ; )

i
m m

m i,
m (17)

and Σϑm
2 is the variance−covariance matrix of the parameters.

For highly nonlinear functions, Monte Carlo uncertainty
propagation can be used.39

3.2.3. Linear Case. A linear transformation function,
fm(x;am,bm) = am + bm(x), will be used in this study, leading
to the calibration model

δ= + + ϵ +o a b cs m m m s s m, (18)

Weighted least-squares regression can be used to estimate the
optimal values of all parameters, a ̂m, b ̂m, d ̂m, and the
uncertainties and covariance of the line parameters u(am),
u(bm), and u(am,bm). The details are provided in the Appendix.
The prediction model and prediction variance are

* = ̂ + ̂ *p c a b c( )m m m (19)

* = * ̂ ̂ + ̂u c u c a b d( ) ( ; , )p f m m m
2 2 2

m m (20)

* ̂ ̂ = + * + *u c a b u a c u b c u a b( ; , ) ( ) ( ) 2 ( , )f m m m m m m
2 2 2 2

m

(21)

The prediction uncertainty upm depends on the calculated value
c*. However, if the benchmark set is large enough and if c* lies
within the range covered by the benchmark set (no
extrapolation), the uncertainty on the calibration model can
become negligible before dm,

9 and eq 20 reduces to

* ≃u c d( )p mm (22)

This convenient approximation will be tested in the next
section.
We insist on the fact that the prediction uncertainty upm has

two contributions: the method inadequacy error dm and the
correction model uncertainty ufm. An example of the relative
contributions of these quantities is shown in Figure 3, where
the major contribution of dm can be appreciated. In terms of

Figure 3. Prediction uncertainty using the B3LYP functional for lattice
parameters: the dashed lines represent the contribution of the
calibration model uncertainty, ±uf; the dotted lines represent the
method inadequacy error contribution, ±dm; the full lines are the total
prediction uncertainty, ±up; the blue bullets are the residual errors for
the reference set used for calibration, and the red triangles are the
residual errors for the data in the validation set.
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variance, the contribution of ufm
2 to upm

2 is about 20% at the
extremities of the plotted lattice constant range, which
corresponds to a value of upm larger than dm by about 10%.
As shown by Pernot and Cailliez,8,9 ignoring method
inadequacy errors leads to unreliable prediction uncertainty
estimations.

4. APPLICATION

4.1. Benchmark and Validation Data. We analyze the
lattice constant, bulk modulus, and band gap for a set of 28
crystals with cubic symmetry (semiconductors and insulators)
and compare 18 different density functional approximations
(local, semilocal, and hybrid functionals). All calculations have
been carried out with the CRYSTAL14 code.40,41 All-electron
and effective-core potentials calculations have been done by
using atom-centerd Gaussian-type basis sets. The latter have
been taken from ref 42, except for alkali halides and SrTiO3 for
which a triple-ζ quality basis set has been employed. The full
set of data is reported in the Supporting Information.
4.1.1. Choice of Reference Data. Reference data were

collected for the following crystals (Strukturbericht designation
in parentheses; taken from the “Crystal Lattice Structures” web
page: http://cst-www.nrl.navy.mil/lattice/struk/index.html):
22 semiconductors, also present in the SC40 data set,42

namely, C(A4), Si(A4), Ge(A4), SiC(B3), BN(B3), BP(B3),
BAs(B3), AlP(B3), AlAs(B3), AlSb(B3), GaN(B3), GaP(B3),
GaAs(B3), GaSb((B3), InP(B3), InAs(B3), InSb(B3), ZnS-
(B3), ZnSe(B3), ZnTe(B3), CdTe(B3), and MgS(B1); 4 alkali
halides LiF(B1), LiCl(B1), NaF(B1), and NaCl(B1); and two
oxides MgO(B1) and SrTiO3(E21).
The reference data set includes (1) experimental lattice

constant values corrected for the zero-point anharmonic
expansion, as reported in ref 66, (2) experimental bulk
modulus values, taken from refs 57 and 67−69, and (3) low-
temperature (below 77 K) experimental (fundamental) band
gap values.42,68,70,71

For bulk modulus, we referred to low-temperature
data,57,67,68 if available, and, when possible, the zero-point
anharmonic expansion correction has been included from ref

57. The band gaps considered cover 2 orders of magnitude,
between ≈0.2 and ≈12 eV.

4.1.2. Validation Data. A set of nine systems has been set
aside for validation purpose. These are systems for which we
did not find bulk modulus reference data: AlN(B3), CdS(B3),
CdSe(B3), MgSe(B1), MgTe(B1), BaS(B1), BaSe(B1), BaTe-
(B1), and LiH(B1).

4.1.3. Reference Data Uncertainties. Concerning the error
bars for lattice constants, the uncertainty from X-ray diffraction
experiments depends on the sample (i.e., powder or single
crystals) and on the instrument/detector. It is claimed that the
uncertainty can reach 0.0001 Å or even smaller.72,73 However,
due to the procedure adopted to obtain the reference ZPAE-
corrected data, which mixes experimental lattice constants and
computed ZPAE corrections, we assume that an uncertainty of
0.001 Å is more representative.
For band gaps, most of the reference data correspond to low-

temperature (LT) values, but some of them have been
measured at room temperature (RT). When LT and RT data
are compared, as reported by Lucero et al.,74 the former are
systematically larger than the latter by 0.10 eV on average (23
systems), with a maximum difference of 0.30 eV. However,
from ref 70 and reference therein, the error bar for the band
gaps ranges from 0.001 eV, or less, up to 0.01 eV. This depends
on the experimental technique adopted to measure it (e.g.,
diffuse reflectance, photoluminescence spectroscopy, ...) but is
more or less independent from the temperature. Therefore, we
consider 0.01 eV as the uncertainty for reference experimental
band gaps.
The experimental uncertainties for bulk modulus range from

a few tenths of GPa up to 4−5 GPa. Again, it depends on the
measurement approach: either from equation of state data by
means of X-ray diffraction measurements, usually for a given
hydrostatic path, or through the knowledge of elastic constants.
For the latter, various techniques can be employed (e.g.,
Brillouin scattering, ultrasonic resonance, ...) and measurements
can be carried out at different temperatures, thus allowing
extrapolation at the static limit. Here, we refer to an average
estimated experimental uncertainty of 2 GPa.

Table 1. List of the DFT Methods Assessed in the Present Worka

method name exchange cSR cMR cLR ωSR ωLR correlation ref

HF HF HF
LDA SVWN S VWN 43, 44
GGA PBE PBE PBE 45

PBEsol PBEsol PBEsol 46
mGGA M06-L M06-L M06-L 47
GH-GGA B3LYP B88 0.20 0.20 0.20 0.00 0.00 LYP 43, 44, 48−50

B97 B97 0.21 0.21 0.21 0.00 0.00 B97 51, 52
PBE0 PBE 0.25 0.25 0.25 0.00 0.00 PBE 45, 53, 54
PBEsol0 PBEsol 0.25 0.25 0.25 0.00 0.00 PBEsol 46

GH-mGGA M06 M06 0.27 0.27 0.27 0.00 0.00 M06 55
SC-RSH HSE06 PBE 1.00 0.00 0.00 0.11 0.11 PBE 45, 56

HSEsol PBEsol 1.00 0.00 0.00 0.11 0.11 PBEsol 46, 57
MC-RSH HISS PBE 0.00 0.60 0.00 0.84 0.20 PBE 45, 58, 59
LC-RSH LC-ωPBE PBE 0.00 0.00 1.00 0.40 0.40 PBE 45, 60

LC-ωPBEsol PBEsol 0.00 0.00 1.00 0.60 0.60 PBEsol 46, 60
RSHXLDA S 0.00 0.00 1.00 0.40 0.40 VWN 44, 61−64
ωB97 B97 0.00 0.00 1.00 0.40 0.40 B97 52, 65
ωB97-X B97 0.157706 0.00 1.00 0.30 0.30 B97 52, 65

aParameters are also reported for global (GH) and range-separated hybrid (RSH) exchange functionals.
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One should consider these global estimations of reference
data uncertainties as optimistic. They often result from the
simple transcription of experimental repeatability statistics,3,27

without considering additional uncertainties resulting from
sample preparation, materials impurities, uncertainty in various
corrections, apparatus calibration, etc. A more pessimistic
scenario will be explored in section 4.5.
4.1.4. Choice of Density Functional Approximations. The

DFAs used in the present work can be classified into the
following groups:

• local and semilocal density functionals (i.e., LDA, GGA,
and mGGA),

• linear global hybrids (GH, where the density functional
exchange is mixed up linearly with the Hartree−Fock
exchange), and

• range-separated hybrids (RSH).

In the latter class of functionals, the amount of HF exchange
included depends on the distance between electrons. They are
obtained from the separation of the Coulomb operator in
different ranges (three ranges in the current implementation)
by means of the error function as

ω ω ω ω
= +

− −
+

        
r

r
r

r r
r

r
r

1 erfc( ) 1 erfc( ) erf( ) erf( )

12

SR 12

12

SR

SR 12 LR 12

12

MR

LR 12

12

LR

(23)

where ω is the length scale of separation. Range-separated
hybrids can be subdivided in long-range-corrected (LC-RSH),
middle-range hybrids (MC-RSH), and short-range-corrected
(SC-RSH) functionals, also known as screened Coulomb. In
these approximations, the long-, middle-, and short-range part
of the exchange, respectively, is described by Hartree−Fock.
The general form of a range-separated hybrid is

= + − + −

+ −

E E c E E c E E

c E E

( ) ( )

( )

xc
RSH

xc
DFA

SR x,SR
HF

x,SR
DFA

MR x,MR
HF

x,MR
DFA

LR x,LR
HF

x,LR
DFA

(24)

According to the values of cSR, cMR, cLR, ωSR, and ωLR, short-,
middle-, and long-range-corrected RSH functionals can be
defined. When ω = 0 and cSR = cMR = cLR, range-separated
hybrids reduce to linear global hybrids.
Mixtures of RSH and linear hybrid functional have also been

considered, as for the ωB97-X. The list of DFT methods
considered in the present work is summarized in Table 1,
including HF.
Note that in contrast to the generally used B3LYP, we used

the variant implemented in the CRYSTAL code, where the
local functional is fitted to the accurate correlation energy of
the uniform electron gas, i.e., VWN5,44 and not to the VWN3
random phase approximation.
The statistical calculations presented in this paper have been

done in the R environment,75 either with core functions,
additional packages as mentioned in the text, or specifically
developed routines.
4.2. Benchmark Statistics. 4.2.1. Error and Deviation

Values. The estimations of MAE, RMSE, MSE, and RMSD for
all methods and properties are reported in Tables 2−4. The
comparison of MSE and RMSE values tells us that most
methods present significant systematic errors (|MSE| ≃
RMSE). Note that because of the presence of trends in the
systematic errors, a small absolute value of the MSE is not an
indicator of the absence of systematic errors.

Results in Tables 2−4 agree with previous benchmarks
studies.24,57,66,67,74,76 Hybrid methods are by far superior to
semilocal functionals in the prediction of the band gap of solids
as expected because of the inclusion of some HF exchange
within the generalized Kohn−Sham formalism. In this respect,
results for global, short and middle range-separated hybrids are
not far from each other. Surprisingly, long-range-corrected
hybrids tend to systematically overestimate band gaps although
HF exchange is included at long-range to recover the correct
decay of the exchange potential. For lattice parameters and bulk
moduli, GGA and related hybrid functionals for solids (e.g.,
PBEsol family) give improved results with respect to common
functionals devised for molecules (e.g., PBE family). Interest-
ingly, we confirm results by Lucero et al.74 for the HISS
functional, which gives overall good results when compared to

Table 2. Sample Statistics for the Methods on the
Benchmark Set for Band Gap (eV): Mean Absolute Error
(MAE), Root-Mean-Square Error (RMSE), Mean Signed
Error (MSE), and Root-Mean-Square Deviation (RMSD)a

MAE RMSE MSE RMSD

HF 6.1 6.2 6.1 1.2
LDA 1.4 1.7 −1.4 1.0
PBE 1.4 1.8 −1.4 1.1
PBEsol 1.4 1.8 −1.4 1.1
B97 0.46 0.67 −0.06 0.66
B3LYP 0.59 0.75 −0.20 0.73
PBE0 0.55 0.63 0.28 0.56
PBEsol0 0.53 0.60 0.28 0.53
HSE06 0.45 0.72 −0.30 0.65
HSEsol 0.42 0.68 −0.32 0.60
HISS 0.48 0.53 0.32 0.41
RSHXLDA 4.5 4.5 4.5 0.53
ωB97 4.3 4.4 4.3 0.52
ωB97X 3.9 4.0 3.9 0.54
LC-ωPBE 4.4 4.4 4.4 0.41
LC-ωPBEsol 5.4 5.4 5.4 0.72
M06-L 0.89 1.2 −0.88 0.86
M06 0.52 0.65 0.19 0.6.2

aThe minimal absolute values in each column are in bold type.

Table 3. Same as Table 2 for Bulk Modulus (GPa)

MAE RMSE MSE RMSD

HF 10.0 14.0 6.2 13.0
LDA 7.1 9.1 3.9 8.3
PBE 12.0 15.0 −12.0 9.9
PBEsol 6.2 9.2 −4.2 8.2
B97 8.0 11.0 −6.9 7.9
B3LYP 9.8 12.0 −9.3 8.3
PBE0 5.1 7.4 0.52 7.4
PBEsol0 7.5 10.0 5.8 8.3
HSE06 5.2 7.4 −0.34 7.4
HSEsol 6.8 9.6 4.8 8.4
HISS 9.1 13.0 7.6 11.0
RSHXLDA 12.0 14.0 11.0 9.5
ωB97 11.0 12.0 7.5 9.5
ωB97X 8.3 9.5 4.6 8.4
LC-ωPBE 14.0 17.0 13.0 11.0
LC-ωPBEsol 24.0 28.0 23.0 17.0
M06-L 7.2 10.0 −4.4 9.1
M06 7.1 9.5 −0.95 9.5
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results for other hybrids. Highly parametrized mGGA func-
tionals such as M06-L and M06 do not significantly improve
results with respect to other examined functionals. As expected,
inclusion of HF exchange in the M06 hybrid functional leads to
a better prediction of band gaps than the semilocal counterpart.
Overall, computed MAE and MSE for LDA, PBE, PBEsol,

M06-L, HSE06, HSEsol, and HISS on a similar set of solids
agree with the ones reported in other works.24,57,66,67,74

4.2.2. DFAs Ranking. One could attempt a ranking based on
MSE and RMSD statistics. At this level, the best performing
methods are characterized by two criteria: (1) the errors are
nearly centered on zero; and (2) they have a small dispersion.
With such criteria, there is no important distinction for band
gaps between HSEsol and other hybrids, like PBE0, PBEsol0,
and even HSE06, ωB97, M06, and B3LYP. The situation is less
clear for bulk moduli, with a slight advantage to PBE0 and
HSE06, and, for lattice parameters, PBEsol0 and HSEsol are
the best contenders.
Whatever the performance statistics, none of the methods

seems optimal for all the properties.
4.3. Statistical Modeling. Figures 4−6 show the

probability densities of the Em error sets for the three
properties, before and after linear calibration (eq 18).
The errors distributions for the raw data (before calibration)

confirm or reveal a few features relevant for the following
developments:

• most methods provide biased estimates for some or all
properties,

• the shape of the distributions varies considerably
between methods and properties, some distributions
are strongly asymmetric whereas others are bimodal, and

• some points seem to lie far of the main batch (outliers)
and many distributions present a long tail.

4.3.1. Calibration. To determine the polynomial degree of
the trend in systematic errors, we used Bayesian Model
Selection (BMS)77 for all error sets. BMS calculates the
posterior probability distribution over a set of models, combining
a parsimony criterion (Occam’s razor) with a goodness-of-fit
criterion. It avoids to overfit the data with overly complex
models. We used the algorithm described in Mana et al.,78 over
polynomial degrees from 1 to 3. BMS shows that the linear

model is the most probable, except for RSHXLDA, ωB97 and
ωB97-X in the prediction of band gaps, where second order
polynomials have slightly higher posterior probability. As the
linear model is not fully rejected for these cases, we considered
a linear correction for all cases.
As can be seen in Figures 4−6, linear correction, besides

eliminating prediction bias, contributes often to produce more
symmetrical distributions (e.g., HF for band gaps), albeit
without always resulting in normal distributions (e.g., ωB97 for
band gaps). In many cases, the dispersion of the errors is
notably reduced (e.g., B3LYP for lattice constants), along with
the distribution tails (e.g., PBE for band gaps). For some
methods, one observes a mere shift of the distribution due to
bias correction, as for ωB97 for band gaps; this corresponds to

Table 4. Same as Table 2 for Lattice Constants (Å)

MAE RMSE MSE RMSD

HF 0.100 0.130 0.100 0.078
LDA 0.035 0.044 −0.035 0.026
PBE 0.089 0.096 0.089 0.038
PBEsol 0.024 0.029 0.024 0.016
B97 0.088 0.097 0.088 0.041
B3LYP 0.100 0.110 0.100 0.052
PBE0 0.040 0.047 0.039 0.027
PBEsol0 0.013 0.019 −0.006 0.018
HSE06 0.044 0.051 0.043 0.028
HSEsol 0.012 0.015 −0.001 0.015
HISS 0.020 0.026 0.011 0.024
RSHXLDA 0.032 0.040 −0.013 0.038
ωB97 0.029 0.037 0.026 0.027
ωB97X 0.041 0.051 0.041 0.032
LC-ωPBE 0.035 0.041 −0.019 0.037
LC-ωPBEsol 0.062 0.072 −0.062 0.037
M06-L 0.067 0.092 0.066 0.064
M06 0.058 0.074 0.057 0.047

Figure 4. Probability density of the Ep,m error sets for band gaps: for
each method, the upper density represents the errors for the raw
calculation data and the lower density the residual errors for the
calibrated data.

Figure 5. Same as Figure 4 for bulk modulus.
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methods for which the points were originally distributed along
a line nearly parallel to the identity line.
Despite the linear correction, there might remain a variation

of the dispersion of the errors as a function of the property
value. In Figure 1b, the corrected errors display no significant
trend but get larger in absolute value for systems with
increasing lattice parameters. Capturing this behavior in the
method inadequacy model might contribute to improve the
quality of prediction uncertainty. This can, however, be
considered as a second order effect and its correction has not
been attempted in the present study, where, considering the
small size of our calibration samples, we aimed at testing the
simplest correction setup.
4.3.2. Internal Validation of the Calibration Model. To

validate the linear correction, we calculated the q2 statistics
through the Leave-One-Out cross-validation method79

ϑ
= −

∑ − ̂

∑ − ̅
=

−

=

q
o f c

o o
1

( ( ; ))

( )
s
N

s m m s m
s

s
N

s

2 1 ,
( ) 2

1
2

s

s
(25)

where one performs Ns linear regressions for sets of data
without one of the points (regression parameters noted ϑ̂m

(−s)),
and compares the sum-of-squares of the prediction errors of
these regressions for the left-out data (numerator) to the sum-
of-squares of the deviations of the sample points from their
mean (denominator).
The q2 statistics goes from 0 to 1, the larger the better. The

q2 statistics for all methods/properties pairs are reported in
Figure 7. Values of q2 above 0.95 can be considered as excellent.
There is therefore no evidence at this stage against the choice
of a linear correction function.
4.4. Prediction Uncertainty Analysis. We calculated the

contribution of the calibration model uncertainty uf to the total
variance in eq 20. This uncertainty is typically larger at the
extremes of the calibration range, and minimal around the
mean value of the calibration data (Figure 3). Its relative
contribution for any calculated value x of a property is
(ignoring the method index)

=r x
u x

u x
( )

( )

( )
f

p

2

2
(26)

The maximal and minimal values of r(x) over the calibration
range have been found to be very weakly dependent on the
DFA for a given property, but strongly dependent on the
property. The DFA-averaged maximal value of r(x) is about
25% for band gaps, 30% for bulk moduli and 15% for lattice
constants, and its minimal value is about 5% for all properties.
The approximation of the prediction uncertainty by method

inadequacy uncertainty dm alone (eq 22) is therefore too
optimistic, notably for band gaps and bulk moduli, in the sense
that it underestimates uncertainty, notably at the extremities of
the calibration range. In terms of uncertainty, using dm
represents a maximal underestimation of prediction uncertainty
of about 8% for lattice constants, 15% for band gaps and 20%
for bulk moduli. These values are to be compared with the
relative uncertainty on the standard deviation of a normal-
distributed sample of size Ns, Δu/u ≃ 1/(2(Ns − 1))1/2, which
for Ns = 28 is about 15%. Therefore, except maybe for lattice
constants, one cannot consider these differences as negligible.
One has also to keep in mind that they are obtained for values
of the reference data uncertainty which are plausibly under-
estimated. Increasing the reference data uncertainties can only
reduce the method discrepancy uncertainty dm (eq 32), and
increase the relative contribution of the correction model
uncertainty, uf, to the prediction uncertainty, up.
The non-negligible contribution of the correction model to

the total uncertainty is mainly due to the small size of the
benchmark sets (28 values). For instance,the calibration
uncertainty contribution has been shown by Pernot and
Cailliez8 to be negligible for calibration sets with 500 and
2500 harmonic vibrational frequencies, and around 12% for sets
of 39 zero point vibrational energies.
A thorough way to improve the constant uncertainty

approximation (eq 22) is therefore to complement the
benchmark set by new reference data, which is not always
possible at short-term. Another solution is to provide users with
all the parameters required to use eq 20 (u(a), u(b), and u(a,b);
see Supporting Information). Although accurate, this solution
does not enable a quick assessment of a set of DFAs. To
provide a reliable uncertainty estimate while maintaining
simplicity, we use the mean value of the prediction uncertainty

Figure 6. Same as Figure 4 for lattice constant.

Figure 7. Validation of linear calibration by leave-one-out (q2)
statistics.

The Journal of Physical Chemistry A Article

DOI: 10.1021/jp509980w
J. Phys. Chem. A 2015, 119, 5288−5304

5296

D
ow

nl
oa

de
d 

by
 U

N
IV

 P
IE

R
R

E
 E

T
 M

A
R

IE
 C

U
R

IE
 o

n 
Se

pt
em

be
r 

7,
 2

01
5 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 F
eb

ru
ar

y 
10

, 2
01

5 
| d

oi
: 1

0.
10

21
/jp

50
99

80
w

http://dx.doi.org/10.1021/jp509980w
http://pubs.acs.org/action/showImage?doi=10.1021/jp509980w&iName=master.img-006.jpg&w=188&h=228
http://pubs.acs.org/action/showImage?doi=10.1021/jp509980w&iName=master.img-007.jpg&w=205&h=152


∑̅ =
=

u
n

u x
1

( )p
i

n

p i
1

2

(27)

calculated on a regular grid of values of the property x covering
its calibration range.
We reported in Tables 5−7 the linear correction factors to

apply to the different DFAs of this study and their approximate

prediction uncertainties dm (eq 22) and up̅ (eq 27; n = 1000).
Uncertainties are conventionally reported with two significant
digits,3 but considering the small sample size and the
approximations involved, one should not attach too much
credit to the last digit.
Comparison with Tables 2−4 shows that correction of the

trend in systematic errors enables a strong reduction of the

higher values of the standard deviation of residual errors: the
methods have prediction uncertainties between 0.4 and 0.8 eV
for band gaps (RMSD between 0.4 and 1.2 eV), 7.2 and 10 GPa
for bulk moduli (RMSD between 7.4 and 17 GPa), 0.013 and
0.049 Å for lattice constants (RMSD between 0.015 and 0.078
Å).

4.4.1. DFAs Ranking. The best preforming DFAs do not see
their dispersion notably improved, but Tables 5−7 offer a new
landscape for method selection: it can be used to select
methods according to uncertainty requirements. For instance,
assuming that one wants to be able to estimate the lattice
constant for a new compound with an uncertainty smaller than
0.02 Å, the last column of Table 7 tells us that one can choose
among five (corrected) methods: PBEsol, PBE0, PBEsol0,
HSE06, and HSEsol. If our requirement is an uncertainty below
0.05 Å, basically all methods should be able to comply.

4.4.2. Prediction Uncertainty Estimation. Tables 5−7 can
also be used to estimate the uncertainty of a calculated value
and to elaborate an uncertainty budget, for instance in the
comparison of the properties of various compounds for
screening studies. As an example of uncertainty evaluation, let
us assume that we calculated a band gap of 10 eV for a new
compound using the PBE method. The prediction of the “true”
value for this property is calculated from Table 5 as 0.502 +
1.385 × 10 = 14.35 eV (eq 20), with an uncertainty of 0.60 eV
(the value of the uncertainty using the exact expression eq 20 is
only slightly larger: 0.67 eV; the full sets of coefficients for eq
20 are provided as Supporting Information).

4.4.3. External Validation of Prediction Model. To validate
the prediction uncertainty model derived in the previous
section, we use a validation set of nine systems not included in
the calibration set. For this systems, we have data only for band
gaps and lattice constants. No external validation is done on
bulk modulus.
The principle of the validation is, for each DFA and property

to

1. correct the calculated values by the appropriate linear
factors (Tables 5−7 and eq 19),

2. calculate the residual errors with the validation reference
values (eq 11), and

Table 5. Linear Correction Factors a and b and Approximate
Prediction Uncertainties d and u̅p for All Methods on Band
Gaps (eV)

a ba d u ̅p
HF −3.773 0.770 0.70 0.74
LDA 0.500 1.347 0.47 0.49
PBE 0.502 1.385 0.57 0.60
PBEsol 0.503 1.385 0.46 0.48
B97 −0.476 1.142 0.53 0.55
B3LYP −0.196 1.108 0.67 0.70
PBE0 −0.819 1.132 0.40 0.42
PBEsol0 −0.835 1.134 0.35 0.37
HSE06 −0.293 1.167 0.44 0.46
HSEsol −0.268 1.167 0.34 0.36
HISS −0.594 1.065 0.37 0.39
RSHXLDA −4.052 0.948 0.52 0.54
ωB97 −4.328 0.998 0.54 0.57
ωB97-X −3.909 0.996 0.56 0.59
LC-ωPBE −4.312 0.987 0.43 0.45
LC-ωPBEsol −4.175 0.872 0.52 0.55
M06-L 0.166 1.240 0.56 0.59
M06 −0.568 1.093 0.56 0.59

aThe slope parameter b is dimensionless.

Table 6. Same as Table 5 for Bulk Modulus (GPa)

a ba d u ̅p
HF 5.300 0.907 7.8 8.4
LDA −2.880 0.992 8.3 8.9
PBE 5.745 1.057 8.4 9.0
PBEsol 1.259 1.026 7.8 8.4
B97 4.004 1.027 7.5 8.1
B3LYP 6.673 1.024 8.1 8.6
PBE0 2.248 0.977 7.0 7.5
PBEsol0 −0.830 0.960 7.1 7.6
HSE06 2.902 0.978 7.0 7.6
HSEsol 0.188 0.959 7.1 7.7
HISS 2.368 0.920 6.7 7.2
RSHXLDA −4.091 0.948 7.7 8.3
ωB97 −10.670 1.025 9.3 10.0
ωB97-X −5.779 1.010 8.4 9.0
LC-ωPBE −5.248 0.940 8.8 9.5
LC-ωPBEsol −5.818 0.878 9.4 10.0
M06-L 3.656 1.007 9.2 9.9
M06 0.291 1.006 9.6 10.0

aThe slope parameter b is dimensionless.

Table 7. Same as Table 5 for Lattice Constants (Å)

a ba d up̅

HF 0.266 0.930 0.047 0.049
LDA 0.031 1.001 0.027 0.028
PBE 0.092 0.966 0.024 0.024
PBEsol 0.017 0.992 0.015 0.015
B97 0.115 0.962 0.024 0.024
B3LYP 0.178 0.948 0.024 0.025
PBE0 0.082 0.977 0.019 0.019
PBEsol0 0.054 0.991 0.017 0.018
HSE06 0.091 0.974 0.018 0.019
HSEsol 0.046 0.991 0.013 0.013
HISS 0.063 0.986 0.021 0.022
RSHXLDA −0.033 1.009 0.039 0.040
ωB97 −0.045 1.004 0.027 0.028
ωB97-X 0.014 0.990 0.031 0.033
LC-ωPBE −0.088 1.020 0.034 0.035
LC-ωPBEsol −0.069 1.025 0.032 0.033
M06-L 0.225 0.945 0.042 0.043
M06 0.102 0.970 0.041 0.043

aThe slope parameter b is dimensionless.
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3. calculate the number of errors falling within a prediction
confidence interval extended to account for reference
data uncertainty (eq 40). Here, we count the errors
within a 2σ confidence interval (about 95% coverage for
a normal distribution).

Two difficulties are to be expected: (1) with small validation
samples, the statistics might be far from their asymptotic values
(i.e., one should not expect that 95% of the points fall within a
95% confidence interval), and (2) the definition of confidence
intervals requires to know the shape of the errors distribution.
Considering the latter point, the part of the prediction

uncertainty due to the correction function (uf) can be assumed
to have a normal distribution: the optimal regression
coefficients being the combination of many uncertain
contributions (os) with finite variance (eqs 28 and 29), the
Central Limit Theorem ensures that they are normally
distributed. This is not the case for the method inadequacy
term dm, representing essentially the residual errors distribu-
tions, which are often non normal (Figures 4−6). It is therefore
to be expected that confidence intervals built on a normality
hypothesis will not be fully consistent with the validation data.
The results of the validation test are reported in Table 8. For

band gaps, 9 points fall within the predicted interval in 12 cases,

8 points in 4 cases, and 7 in 2 cases. We can consider that the
predicted uncertainties are satisfying, even if they are probably
slightly overestimated. This is on the safe side: users have a very
small risk to overestimate the accuracy of their calculations.
For lattice constants, there are 7 cases where only 6 points or

less are correctly predicted. For two DFAs (RSHXLDA and
ωB97), the problem persist if one uses a 3σ confidence interval.
Referring to the results on Bayesian Model Selection (section
4.3.1), this could suggest that the linear correction model is
insufficient. However, investigation of the errors distributions
for these cases shows that there is a small overlap between the
calibration and validation error sets. The linear correction does
not contribute to shift those points toward the center of the
distribution (Figure 8). For these DFAs, it seems that the

calibration set is not fully representative of the species in the
validation set.

Globally, we checked that, despite the caveats of small
sample size and non-normal distribution, the prediction models
provides reasonable confidence intervals, except for a few DFAs
(RSHXLDA and ωB97), for which the lattice constants
calibration set is poorly representative of the data in the
validation set. Ever after linear correction, theses DFAs should
not be recommended to predict lattice constants.

4.5. Sensitivity to Reference Data Uncertainty. Up to
this point, all evaluations have been done with reference data
uncertainty values us which are plausibly underestimated
(section 4.1.1). To assess the impact of us on the prediction
uncertainty up, we reevaluate u ̅p (eq 27) with values of us more
akin to account for various perturbations such as temperature
effects, corrections uncertainty....
We consider indeed a worst case scenario, i.e., the largest

values of us that do not compromise the least-squares regression
validity. As overestimated values of us would produce unlikely
small values of χ2 (eq 12), we request χ2 to be above the 5%
quantile of the standard chi-squared distribution with Ns − 2
degrees of freedom (χmin

2 ≃ 15.4). The corresponding values
are us = 0.3 eV for band gaps, 7 GPa for bulk moduli, and 0.015
Å for lattice constants.80

The new values of up̅ are shown in Table 9 alongside those
issued from Tables 5−7. For all properties, the effect is more
visible for methods which had a prediction uncertainty close or
below the worst case value of us. One reached a point where
some methods (most of them for bulk modulus, indicating that
the worst case value of us = 7 GPa might be too large) have
their prediction uncertainty smaller than reference data
uncertainty. In this scenario, such methods, after a posteriori
correction, could be selected to replace advantageously costly
and/or difficult measurements, with the same level of
confidence.
Globally, the prediction uncertainty presents a low sensitivity

to the reference data uncertainty: for band gaps and lattice
constants, an increase of more than 1 order of magnitude in us
results at most in a reduction by a factor 2 (band gaps) or 4
(lattice constants) of u ̅p. These factors are, however, still much
larger than the 15% of relative uncertainty on a standard
deviation one can expect for samples of this size (see section
4.4).
This analysis shows that for a reliable estimation of method

prediction uncertainty one needs an adequate evaluation of

Table 8. Number of Points of the Validation Set within the
Predicted 2σ Error Range after Linear Correctiona

band gap lattice constant

HF 9 7
LDA 8 8
PBE 9 7
PBEsol 8 6
B97 9 6
B3LYP 9 7
PBE0 9 7
PBEsol0 8 8
HSE06 9 7
HSEsol 7 7
HISS 7 7
RSHXLDA 9 5
ωB97 9 4
ωB97-X 9 5
LC-ωPBE 9 6
LC-ωPBEsol 9 5
M06-L 8 9
M06 9 8

aThe validation set contains 9 points.

Figure 8. Errors redistribution by linear correction, for calibration
(blue dots) and validation (red triangles) sets of lattice constants
estimated by the RSHXLDA method. The gray area represents the 2σ
interval used for validation.
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reference data uncertainty, which is probably the most sensitive
issue in the implementation of the VM framework.
4.6. Looking Back at the Reference Data. Figures 9−11

show the distributions of errors per system, Ep,s = {Ep,m,s;m ∈
DFAs}, before and after the linear correction applied in the
previous section.
At the system level, the reduction of dispersion is

remarquable, confirming that calibrated DFAs produce more
consistent results. After correction, some systems present a

significant bias; i.e., their error distribution does not overlap the
zero axis. Outstanding examples are the bulk moduli of GaN,
MgS, and SrTiO3, or the band gap for LiF, NaF and NaCl.
These systems are contributing to the “outliers” in the errors
distributions per method in Figures 4−6, and the fact that all
methods are unable to predict these systems properties
deserves further attention.
For the bulk modulus, the reason is probably the

experimental temperature. In fact, data for GaN, MgS, and

Table 9. Effect of Reference Data Uncertainty (us) on
Prediction Uncertainty u̅p

a

band gap (eV)
bulk modulus

(GPa) lattice constant (Å)

us 0.01 0.30 2 7 0.001 0.015

HF 0.74 0.67 8.4 5.0 0.049 0.047
LDA 0.49 0.39 8.9 5.9 0.028 0.024
PBE 0.60 0.52 9.0 6.0 0.024 0.019
PBEsol 0.48 0.38 8.4 5.1 0.015 0.004
B97 0.55 0.46 8.1 4.5 0.024 0.019
B3LYP 0.70 0.63 8.6 5.5 0.025 0.020
PBE0 0.42 0.30 7.5 3.4 0.019 0.012
PBEsol0 0.37 0.21 7.6 3.6 0.018 0.009
HSE06 0.46 0.35 7.6 3.5 0.019 0.011
HSEsol 0.36 0.19 7.7 3.7 0.013 0.004
HISS 0.39 0.25 7.2 2.7 0.022 0.016
RSHXLDA 0.54 0.45 8.3 4.9 0.040 0.037
ωB97 0.57 0.48 10.0 7.5 0.028 0.024
ωB97X 0.59 0.51 9.0 6.0 0.033 0.029
LC-ωPBE 0.45 0.33 9.5 6.7 0.035 0.032
LC-ωPBEsol 0.55 0.46 10.0 7.6 0.033 0.029
M06-L 0.59 0.50 9.9 7.2 0.043 0.041
M06 0.59 0.51 10.0 7.9 0.043 0.040

aThe values in boldface are the one where u̅p ≤ us.

Figure 9. Effect of linear calibration on errors distribution per system
for band gap. Above/blue: before. Below/red: after.

Figure 10. Effect of linear calibration on errors distribution per system
for bulk modulus. Above/blue: before. Below/red: after.

Figure 11. Effect of linear calibration on errors distribution per system
for lattice constant. Above/blue: before. Below/red: after.
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SrTiO3 correspond to room temperature values. For GaN,
there is also a problem with the zinc-blende phase (B3),
because there are some discrepancies among available
experimental data. Moreover, the bulk modulus has been
derived from experimental data for the wurzite phase (B4).
These data should either be corrected for temperature effects,
and their uncertainty increased accordingly, or rejected from
the calibration set.23

Concerning the band gaps, alkali halides are the systems with
the largest values in the data set (from 9 to 14 eV) and all
tested methods systematically fail in predicting the band gap of
wide band gap insulators. Here again, one has to consider if
these data should be rejected.
One might be tempted to treat this problem by making

subsets of the reference data (such as done for vibrational
frequencies,30 or intermolecular potentials12), using a different
calibration models for each subset. This is not a viable solution
in the present case for two reasons: (i) the resulting subsets
would become too small to enable significant statistical analysis;
and (ii) one would then calibrate the calculation methods to
correct for different reference biases and ruin the prediction
ability of the calibrated methods.

5. DISCUSSION

We have derived a statistical model in the VM framework to
estimate the uncertainty on a property value predicted by a
DFA. Calculating an uncertainty required us to correct the DFA
results for systematic errors. We have seen that for the solids
properties studied here, a linear correction was generally
sufficient. The residual errors of a corrected DFA are the basis
for estimating its prediction uncertainty, which also includes a
part due to the linear correction model. The calibration/
prediction procedure uses standard statistical tools (WLS
regression, uncertainty propagation by combination of
variances) and is simple to implement.
The essential contribution of the present derivation is to

introduce a method inadequacy error term in the calibration
model to acknowledge the fact that a corrected DFA is typically
unable to reproduce reference data within their uncertainty
range. This additional error term, modeled by a stochastic
variable, ensures the statistical consistency of the calibration
and prediction stages. We has shown that it is generally the
major contribution to prediction uncertainty.
We want to address here a few points regarding the

assumptions and limits of this approach.
5.1. Weigted Least-Squares Regression. The WLS

regression formulae rely on few assumptions: the errors have
to arise from distributions of mean zero and finite variance and
they have to be uncorrelated. There is therefore no constraint
on the specific shape of the errors distributions. Nevertheless,
two sensitive points of the method should be considered:

• Dependence on the reference data uncertainty. If the
reference data uncertainty is not negligible before
method inadequacy errors, it might play a significant
role through the weights in the WLS procedure. The
present study was based on the assumption of uniform
uncertainty for each property. We have seen in this case
that the prediction uncertainty has a non-negligible
dependence on the reference data uncertainty value. A
more detailed budget of reference data uncertainties has
to be established, notably by prioritizing the outlier
systems identified in section 4.6.

• Sensitivity to outliers. Least-squares procedures are well-
known to be sensitive to outliers, i.e., points with
weighted residual errors much larger than those of the
other points in the set. Outliers can be dealt with at
different levels: they can be rejected from the reference
set, maybe on the basis of an heterogeneity in
experimental methods or physicochemical properties, or
they can be given less importance by using robust
regression methods. A preliminary study using a rank-
based robust method (package Rfit81) revealed only
nonsignificative differences with the least-squares results,
but this has to be further explored.

5.2. Calibration Model. The calibration model is based on
two choices:

• The correction function fm. It is striking that the observed
trend in the errors of most DFAs is linear. In the present
study, this might result from the small sample size, i.e., a
lack of information for selecting more complex trends.
Note, however, that the linear trend is also observed for
very large sets of harmonic vibrational frequencies, albeit
following the discrimination of low-frequency modes
from high-frequency modes,30 and for large sets of
elemental solids.23 If necessary, more complex correction
functions, such higher order polynomials could be
considered while preserving the WLS regression method.

• The method inadequacy stochastic model δm. We have
chosen to describe method inadequacy errors by a
random variable with a uniform standard deviation across
the calibration range. However, we noted from Figure 1b
that, for some DFAs, the dispersion of residual errors
seems to increase with the calculated value of the
property. We have considered this as a secondary effect,
but a property-value-dependent model could be directly
inserted in the WLS procedure and its parameters
optimized iteratively. One would then have to deal
explicitly with property-value-dependent prediction
errors, more complex to communicate to the end users.
Here again, larger samples would be necessary to assess
the necessity of this refinement.

5.3. From Standard Uncertainty to Enlarged Un-
certainty. It is recommended by Ruscic,11 following the de
facto standard in thermochemical data tabulations, that
computed data should be provided with an enlarged
uncertainty, u95, enabling us to define a 95% confidence
interval for the true value. A major difficulty we evidenced in
the present study is that converting a standard uncertainty, such
as up, to a confidence interval requires the knowledge of the
errors distribution. For instance, for a normal distribution, one
would have u95 ≃ 2up, whereas for a uniform distribution u95 ≃
1.65up. Considering the varied and nonstandard shapes of the
errors distributions observed for the calibrated DFAs (Figures
4−6), the estimation of u95 cannot be done as simply as for
standard distributions. A numerical estimation of a confidence
interval based on the 2.5% and 97.5% quantiles could be done,
but one is facing again the problem of small sample size, even
more sharply for the estimation of extreme quantiles than for
the standard deviation (for a 28 points sample, there is, on
average, less than one point in each of the 2.5% external
intervals).
We also stress that there is no reason we should expect errors

produced by (calibrated) DFAs to follow normal distributions.
Model discrepancy generates property-dependent systematic
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errors with no predictable distribution. Normality is only to be
expected as a limit case for methods with null inadequacy
errors, when the errors are dominated by assumed normal
reference data uncertainties. Moreover, the small sample size
and the selection process of reference data might also play a
role in the observed deviance from normality.

6. CONCLUSIONS
Benchmarks have their limitations, but are a condensate of
numerical experience, and are thus useful. They can provide
information, but it should be treated with care.
We tested in this study the applicability of the Virtual

Measurement framework to density functional approximations
for the estimation of various properties of solids. In this
approach, each computational result has to be qualified by an
uncertainty or confidence interval. Informed of the prediction
uncertainty of various methods, users should be able to choose
a suitable method, in terms of accuracy, availability and costs,
which is not necessarily the “best” method highlighted by
standard performance statistics. Users would also be able to
assess the contribution of each calculation in an uncertainty
budget, for instance in DFT-based multiscale simulations.
We have shown that the measures of performance commonly

used in computational chemistry benchmarks do not provide
directly the prediction uncertainty for a method, mostly
because they do not disambiguate the predictable/systematic
components of the errors from their unpredictable/random
component. In fact, statistical analysis of the benchmark error
sets reveals notable systematic components, presenting a
regular trend as a function of the property value, which needs
to be corrected to get reliable uncertainty estimates. In the
present study, a linear correction of the calculated values was
found sufficient to reach this goal.
Pernot and Cailliez9 have shown that for large benchmark

sets the prediction uncertainty can be safely derived from the
standard deviation of the errors of the scaled properties. We
treated here reference sets with about 30 values, and we
observed that this approximation underestimates prediction
uncertainty. A corrected value of prediction uncertainty has
been proposed and validated on an external set of reference
data.
As usual performance statistics do not account for reference

data uncertainty, their use requires high-quality (meaning
negligible uncertainty) reference data. In contrast, the statistical
models of the VM approach can deal with reference data
presenting uncertainties of the same order as model prediction
uncertainty. They offer also a practical correction method for
those cases where the calculated property does not exactly
correspond to the experimental one, such as for band gap
(section 2.4). The a posteriori calibration models are therefore
of very general applicability, at the additional cost of a reliable
estimation of reference data uncertainty, which is not a minor
issue.
Another difficulty identified in this study for the successful

application of the VM approach is the estimation of reliable
confidence intervals. We have shown that the estimation of a
prediction uncertainty is rather straightforward, but the
estimation of an enlarged uncertainty to define a 95%
confidence interval is made difficult by the small sample sizes
and the arbitrary shape of the errors distributions.
A drawback of the a posteriori calibration approach is the lack

of generalizability: it is not possible to estimate the prediction
uncertainty of a DFA for a property against which the DFA has

not been calibrated. Similarly, there is no evidence in the
conventional approach that a DFA with good performance
statistics will perform as well for untested properties, hence the
need of exhaustive benchmark tests.24

On the positive side, we have shown that methods rejected
on their MAE or RMSE performance because of large
systematic errors can, after calibration, become competitive
with the “best” benchmark performers in terms of prediction
uncertainty. This considerably widens the choice of methods
for the end users. Low-cost calibrated methods with well-
characterized prediction uncertainty could be promising for
high-throughput studies.
It is too early to suggest that the correction parameters

provided here for the band gaps, bulk moduli, and lattice
constants of crystals with cubic symmetry should be used
confidently. The database still needs to grow and to be
groomed, including a better assessment of reference data
uncertainties. Nevertheless, the methodology to estimate the
calibration parameters and prediction uncertainties can easily
be applied to any other benchmark set, and we consider that it
would be a very valuable complement to the usual performance
statistics.

■ APPENDIX: ESTIMATION OF THE CALIBRATION
PARAMETERS

We provide below the expressions of the optimal parameters,
their uncertainty and covariance for the problem of weighted
least squares linear regression with a stochastic method
inadequacy contribution (eq 18). The derivation of the basic
formulae can be found in data analysis textbooks,36 although
most of them do not provide the covariance formula, which is
essential for uncertainty propagation.82,83 The main difference
of our derivation resides in the interpretation and management
of the variance contributions, and the need for an iterative
procedure (Iteratively Reweighted Least Squares).

Calibration
We first treat the general case of linear regression of reference
data with known uncertainty, (os ± us, s = 1, Ns), and then we
consider the particular case of negligible reference data
uncertainty. We do not address the case of correlated reference
data, because such correlation information is practically never
available in reference data sets. We remove the method index m
in the equations for concision.
Let us assume, in a first stage, that reference data uncertainty

is the sole source of dispersion of the points around the
regression line. The optimal parameters for Weighted Least
Squares (WLS) linear regression have closed-form expressions

̂ =
∑ ∑ − ∑ ∑

Δ
b

w wco wc wo
(28)

̂ =
∑
∑

− ̂∑
∑

a
wo
w

b
wc
w (29)

∑ ∑ ∑Δ = −w wc wc( )2 2
(30)

where all sums run over s = 1, Ns (i.e., ∑wx ≡ ∑s=1,Ns
wsxs), and

the weights are defined as ws = 1/us
2.

If this regression model is valid, one should have

∑χ = − ̂ − ̂ ≃ −w o a bc N( ) 2s
2 2

(31)
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If this is the case, the residuals variance is fully explained by the
reference data uncertainty, and there is no need to consider
method inadequacy: the calibrated method is able to predict
reference data within their error bars.
For many approximated methods, this scenario is unlikely

and would occur for reference sets of very uncertain data,
improper to evaluate model prediction uncertainty. Similarly, if
χ2 ≪ Ns − 2, the reference data uncertainty have probably been
overestimated and are also improper for our purpose.
The case which interests us here is when χ2 ≫ Ns − 2, i.e.,

when the residuals variance is significantly larger than what is
expected from reference data uncertainty. In the hypothesis
where the weighted residuals are randomly distributed, one can
estimate the variance due to method inadequacy as the
difference between the residuals variance and the mean
reference variance

∑ ∑=
−

− ̂ − ̂ −d
N

o a bc
N

u
1

2
( )

1

s s
s s

s s
s

2 2 2

(32)

which cannot be negative if χ2 ≫ Ns − 2. Knowing d, one is
now able to specify the full calibration model (eq 18). We solve
it by redefining the weights as

= +w u d1/( )s s
2 2

(33)

and inserting them in the formulae giving Δ, a ̂ and b ̂ (eqs
28−30).
For uniform reference data uncertainty (us = const.), this

reweighting will not change the values of a ̂ and b ̂, and one can
proceed directly to the evaluation of the variance−covariance of
the parameters with the updated value for Δ. Otherwise, a few
iterations of the reweighting procedure (eqs 28−30, 32, and
33) will be necessary to reach convergence.
The χ2 test (eq 31) is verified by construction, and we can

derive the parameters uncertainty and covariance by the
standard WLS formulae

=
∑

Δ
u b

w
( )2

(34)

=
∑

Δ
u a

wc
( )2

2

(35)

= −
∑
∑

u a b
wc
w

u b( , ) ( )2

(36)

To summarize, in the general case where we have
nonuniform reference data uncertainties, one must apply an
Iteratively Reweighted Least Squares procedure to determine
(1) the excess variance d2 attributed to method inadequacy
errors and (2) the optimal parameters of the calibration
function, their uncertainty and covariance. If the reference data
uncertainties are uniform, only one step of the reweighting
procedure is necessary.
If the reference data uncertainty is negligible before the fit

residuals, one recovers the ordinary least squares method,36 but
where the full residuals variance is explained by method
inadequacy, i.e.

∑=
−

− ̂ − ̂d
N

o a bc
1

2
( )

s s
s s

2 2

(37)

Prediction
For the estimation of a new value of a property knowing a
calculated value c* (i.e., for a system not in the benchmark set),
the prediction model and prediction variance are

δ* = ̂ + ̂ * + ̂p c a bc( ) (38)

* = ̂ + + * + *u c d u a c u b c u a b( ) ( ) ( ) 2 ( , )p
2 2 2 2 2

(39)

where δ ̂ ≡ 0 has been left in the prediction equation as a
reminder of the occurrence of d2 in the prediction variance. The
expression of up

2 is obtained by combination of variances
applied to p.3,38 The uncertainty on d2 has been shown to be of
secondary importance,8 and has not be considered here. up

2

accounts for uncertainties linked to model calibration and
method inadequacy errors.
Note that for the comparison of a model prediction with

reference data (as in cross- or external validation procedures),
or the prediction of an experimental result, this variance has to
be further combined with the corresponding reference/
experimental data uncertainty

= +u u up s
2 2 2

(40)
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