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ABSTRACT m 
Short-range nonclassical electron-electron interaction is described by a density 
functional in a scheme that allows multideterminant wave functions. The 
parameter that determines the coupling with the configuration-interaction-type 
calculations can be chosen in a controlled manner. Results are presented for 
the He and the Be series using a Yukawa-type interaction. 0 1995 John Wiley & 
Sons, Inc. 

Introduction 

Ithough improving the density functionals A as defined by Kohn and co-workers [1,2] 
is certainly a very successful approach, one may 
alternatively consider the possibility of extending 
their theory to exploit the experience gained in 
wave-function calculations using multideterminant 
wave functions. The difficulty comes mainly from 
the problem of finding a proper separation be- 
tween the contributions coming from the density 
functional and that which is due to the wave func- 
tion. It seems physically sound to try to describe 

the short-range interaction of electrons by density 
functionals (e.g., the cusp condition) and to use 
wave functions for the long-range part (cf. the 
hydrogen molecule at large internuclear distances). 
This philosophy is also supported by practical point 
of view: It is known that short-range interaction 
leads to a slowly convergent expansion of the wave 
function in terms of Slater determinants (see, e.g., 
[3]) ,  whereas near-degeneracy effects can be well 
described with medium-sized basis sets [4]). 

There are several other approaches that relate 
configuration-interaction-type calculations with 
density-functionals [5-131. A comparison of dif- 
ferent approaches can be found in [12]. 
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Theory 

The existence of universal short-range density- 
functionals is most easily shown in the constrained- 
search formalism ([14], see also, [15]). Let f be the 
operator for kinetic energy, and pee, that for the 
electron-electron interaction. Let further 9:'" be 
the antisymmetric wave function that minimizes 
(f + Pee) and yields the density n .  Then, accord- 
ing to Levy [14], the universal density functional 
needed for obtaining the ground-state energy is 

F [ n ]  = (*;'"If + PeeIT;i"). 

With the classical electron-electron interaction, 

and with a:'", the single determinant that yields n 
and minimizes ( f ), the universal density function- 
als for exchange-correlation 

E,,[n] = F [ n ]  - ((a.,"'"IfIa.,"'") + U[n]) 

E J n ]  = F [ n ]  - ((a).,"'" Ifla.,"'") + (@.,"'"lVeel@.,"'")) 
and correlation 

can be defined. 
The last two formulas can be modified to define 

universal short-range functionals. One can split pee 
into a short-range (P,) and a long-range (V l )  part 
(cf. [8]): 

Pee = P, + P[ . 
For example, P, can be chosen of the Yukawa type: 

e-wr, 

r i j 
v,(i,  j )  = -. 

One then can define as universal density function- 
als for short-range exchange-correlation 

E,,,,[n] = F[n]  - ((a.,"'qf + P&q'"J) + U , [ n ] ) ,  

E , , , [n]  = F[n] - ((@.,"'",'If + P[l@.,"'"J) 
or for short-range correlation only: 

+ @.,"'"IPS:,@.,"'")). 
These formulas have been obtained by replacing 
the operator f by the operator f + Pl. Here, @Fin,'  
is the antisymmetric wave function that yields n 
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and minimizes (f + v ~ ) .  By this choice, it is possi- 
ble to introduce a multideterminant wave function 

instead of a single-determinant one (a,"'"). 
With a suitable choice of p[ [as with the Yukawa 
potential for p,, Eq. (l)], will be cuspless. 
As the long-range electron-electron interaction is 
present in (@.,"'",[If + v [ l @ : i n v l ) ,  only the short- 
range parts of U[n] ,  

U J ~ I  = 1 J n(rl)n(r2>v,(rl,r2)d3rld3r2r 2 

and that of (Ca.,"'"lPeeIcP,"'"), namely, (@p Ip,l@;'"), 
have to be subtracted in the expressions for Es,xc[n]  
and Es, , [n] ,  respectively. 

The ground-state energy, E,,, can be obtained 
as for the full interaction density functionals by 
searching for the optimal wave function: 

~ g s  = m j ( ~ [ n l +  1 .,ex,) 

= min + ~lla) + J n ( a ) v e X f  

+ Us[n(@)l + E s , x c [ n ( a ) l )  

@ ( 
+ (@;i"l~sl@.,"i"> + Es.,"(a)1) 9 

cp ( 

= min + ~ 1 1 ~ )  + J n(@)vext  

where n ( @ )  means that the density is determined 
via the wave function CP and veXf is the external po- 
tential. @ria should be determined according to the 
definition above by using the standard Kohn-Sham 
equations [2]. 

It is possible to use the coupling-constant in- 
tegration (adiabatic connection, see, e.g., [16]) in 
order to obtain more insight into the functionals 
E,,,,[n] and Es, , [n] .  The formulas are obtained with 
the Hamiltonian 

A ( g )  = f + V' + gP, + P(g), 

where V(g )  is a one-particle operator that contains 
the external potential and guarantees the conser- 
vation of n during the process of changing the 
parameter g(0 5 g 5 1). Formulas similar to those 
for Ex,[n]  and E,[n]  can be then easily obtained. 
For example: 
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PZ ( r  I, r2; g )  is the second-order density matrix 
[17,18]. 

The choice of vs allows a continuous switch 
between pure density functional and configuration 
interaction calculations. For that given in Eq. (l), 
this amounts to changing p from zero to infinity. 

As for E,,[n] and E,.[n], the short-range func- 
tionals can be obtained in an approximate form, 
the simplest one being the local one: 

Ei[n]  -- d”n(r )E j (n ( r ) ) ,  .I 
where i stands for any of xc, c, s,xc, or s,c. e l ( n )  
is a function depending on the density alone. A 
convenient way to determine the ei is by using ho- 
mogeneous electron gas calculations. Some details 
are given in the Appendix. 

The local approximation with the electron gas fit 
has been tested for a few two-electron systems (the 
He series and the Be series; pseudopotentials have 
been used for the latter). 

Computational Details and Results 

The calculations were performed using large 
Gaussian-type ( s , p , d )  basis sets [19] for the He 
series (He to C4+) and the Be series (Be to 04+). 
The number of variational parameters was reduced 
by contracting the Gaussians to the first 3s,2p,ld 
natural orbitals (as in [20]). The semilocal pseu- 
dopotentials for the Be series were taken from 

For two-electron systems, @:In is easily obtained 
from the densities; its spatial part is simply 
( 1 / 2 ) [ n ( r l ) n ( 1 - 2 ) ] ” ~  (see, e.g., 1231). Ps was chosen as 
in Eq. (l),  the parameter p being varied between 
0 and 24 bohr-I. 

were done self-consistently. At least for the systems 
studied, the error is small when using n and Q, from 
the E ,  ,( calculation for obtaining the energy with 
the density functional for Es,< alone. 

The difference between the value calculated in 
the local density approximation for es and the 
”exact” values ([24] for the He series, and the full 
configuration interaction results for the Be series) is 
presented in Figures 1 and 2. There is a systematic 
shift of the curves with the change in the nuclear 
charge. This is related to the fact that l/,u corre- 
sponds to an effective interaction radius, which, 

[ 21,221. 

Both the calculations with E , , , ,  and with E ,  

He series (short-range xc LDA) 
, . ,  

-0.02 I I I I I 

0.0 4.0 8.0 12.0 16.0 20.0 24.0 
Yukawa exponent (a.u.) 

He series (short-range e LDA) 
I 1 

o*021 

0.0 4.0 8.0 12.0 16.0 20.0 24.0 

Yukawa exponent (au.) 

FIGURE 1. He series. Difference between the 
calculated (local density approximation for Yukawa 
short-range electron-electron interaction) and “exact” 
total energies with density functionals for exchange 
and correlation (top) or for correlation only (bottom); 
as functions of the Yukawa exponential factor; in atomic 
units. 

of course, becomes smaller within an isoelectronic 
series with increasing Z .  The values for p = 0 
correspond to usual local density calculations. An 
increase of the Yukawa exponent p in the vicinity 
of zero always leads to a decrease of the magnitude 
of the error. After a certain value of p, po, the errors 
remain small (of the order of lop3 Hartree). po 
seems to be smaller with exchange-correlation den- 
sity functionals than for those for correlation only, 
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Be series (short-range xc LDA) 

0.14 

Be aeries (short-range c LDA) r I 

0.06 olj 

-0.02 

I I I I I , 
-0.06 

0.0 4.0 8.0 12.0 16.0 20.0 24.0 
Yukawa exponent (au.) 

FIGURE 2. Be series. Difference between the 
calculated (local density approximation for Yukawa 
short-range electron-electron interaction) and “exact” 
total energies with density functionals for exchange 
and correlation (top) or for correlation only (bottom); 
as functions of the Yukawa exponential factor: in atomic 
units. 

even when the error at p = 0 (usual local den- 
sity approximation) shows the opposite trend. This 
might be related to the damping of the long-range 
effects in the homogeneous electron gas (see, e.g., 
1251) when correlation and exchange are treated to- 
gether. Another explanation might be the difference 
in the sizes of the exchange and correlation holes 
(the latter being smaller needs a larger p). 

For p - m, the configuration interaction results 
are obtained. The question arises whether the local 

He (short-range xc LDA) 

0.0 4.0 8.0 12.0 16.0 20.0 24.0 
Yukawa exponent (au.) 

He (short-range c LDA) 
0.02 

c__ _-1---1 ^_____c_______-_ 

-1 

I I I 

Yukawa exponent (a&) 

FIGURE 3. Energy difference between the 
calculated and exact He energy (dashed line) and the 
density-functional contribution (full line) as functions 
of the Yukawa exponential parameter; when using 
exchange-correlation (top) and correlation-only (bottom) 
density-functionals; in atomic units. 

approximation has to be switched off completely 
in order to force the energy error down. At the 
value of the Yukawa exponent where the energy 
reaches practically the exact value, there still is a 
significant density functional contribution. Figure 3 
shows a comparison of the local approximation 
error with the density functional contribution tak- 
ing the He atom as an example. Clearly, the error 
drops down faster than does the density functional 
contribution. 
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Conclusions 

The use of short-range density functionals leads 
to encouraging results in two-electron systems, 
even when using the local density approximation. 
One might use this in order to have a controlled 
improvement of the calculated energy. In practice, 
one might either rely on experience for choosing the 
optimal p or examine the stability of the obtained 
result with respect to changes in p. 

Further calculations have to study systematically 
the convergence in the wave-function expansion in 
terms of Slater determinants in connection with the 
present schemes. It will be also useful to explore 
other definitions of c, . For calculations with Gauss- 
ian basis sets, the form e~p(-pr?~)/r12 might be 
preferable. Further consideration should be given 
to more sophisticated forms of the density function- 
als (depending on the gradient, spin-polarization, 
or second-order density matrix). 
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Appendix: Homogeneous Electron 
Gas Calculations for the Local 
Approximations of Short-range 
Density Functionals 

The homogeneous electron gas is very conve- 
nient for obtaining the dependence of € 1  (energy 
per particle) on n needed for Eq. (2). To obtain the 
short-range ei with vs given by Eq. (l), the Fourier 
transform of the vs is needed, which is 47r/(k’ + 

TABLE 1 
Ratio between the short-range and total correlation energies in the Fermi-hypernetted chain approximation 
[rs = [3/(4mn)]’”, p is the Yukawa exponent in Eq. (l), in atomic units]. 

rs 

G 0.2 0.5 1 .o 2.0 3.0 4.0 5.0 

0.2 
0.5 
1 .o 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
11.0 
12.0 
13.0 
14.0 
15.0 
16.0 
17.0 
18.0 
19.0 
20.0 
21 .o 
22.0 
23.0 
24.0 
25.0 

0.999 
0.991 
0.948 
0.846 
0.757 
0.681 
0.61 6 
0.560 
0.51 1 
0.468 
0.430 
0.396 
0.367 
0.340 
0.31 5 
0.294 
0.274 
0.256 
0.240 
0.225 
0.21 1 
0.1 99 
0.188 
0.177 
0.168 
0.159 
0.151 

0.991 
0.935 
0.830 
0.655 
0.525 
0.428 
0.354 
0.296 
0.251 
0.216 
0.187 
0.163 
0.144 
0.127 
0.1 13 
0.102 
0.092 
0.083 
0.075 
0.069 
0.063 
0.058 
0.054 
0.050 
0.046 
0.043 
0.040 

0.962 
0.849 
0.679 
0.446 
0.309 
0.223 
0.168 
0.130 
0.103 
0.085 
0.070 
0.059 
0.050 
0.043 
0.038 
0.034 
0.029 
0.027 
0.024 
0.021 
0.01 9 
0.018 
0.016 
0.015 
0.014 
0.01 2 
0.01 1 

0.898 
0.697 
0.455 
0.222 
0.128 
0.081 
0.056 
0.040 
0.031 
0.025 
0.020 
0.016 
0.013 
0.01 1 
0.01 0 
0.009 
0.007 
0.006 
0.006 
0.005 
0.005 
0.005 
0.004 
0.004 
0.004 
0.002 
0.002 

0.835 
0.564 
0.306 
0.121 
0.063 
0.038 
0.025 
0.01 8 
0.01 4 
0.01 1 
0.008 
0.006 
0.005 
0.005 
0.003 
0.003 
0.003 
0.003 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.000 

0.769 
0.453 
0.209 
0.071 
0.035 
0.020 
0.01 3 
0.009 
0.007 
0.005 
0.004 
0.004 
0.002 
0.002 
0.002 
0.002 
0.001 
0.001 
0.001 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.705 
0.362 
0.149 
0.046 
0.023 
0.01 3 
0.008 
0.006 
0.004 
0.004 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.001 
0.001 
0.001 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
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p 2 )  instead of 47r/k2 for pee. For exchange, ~i can 
be easily obtained in analytical form by replacing 
47r/k2 in the usual formulas (given, e.g., in [27]): 

2 1 
e s , x  = - ; k F (  + - a tan-’ - a 

+-  3 + a2 a 2 1 n T - -  1 4 a 2  
“ 4 ‘ 7  4 

where a = p / ( 2 k F )  and kF = (37rn)lm. 

For the short-range correlation (eS,,), more 
elaborate calculations are needed. For this article, 
the Fermi-hypemetted-chain (FHNC//O approxi- 
mation) program of Krotscheck was changed only 
by modifying the electron-electron interaction 
[28]. For the total correlation energy per particle 
(obtained with ps = pee), the values obtained 
are typically 0.005 to 0.010 Hartree lower than 
those obtained with the Vosko- Wilk-Nusari (VWN) 
formula [29]. To have a comparison with standard 
local-density calculations, the FHNC E$,= were scaled 
with the factors given by the ratio between the 
VWN E ,  and the FHNC//O one. The ratio between 
E , , , / E ,  in the FHNC//O approximation are given in 
Table I. The atomic program interpolated between 
these values [30]. The integrations were performed 
numerically, although analytical formulas can be 
derived. This was done in order to have a greater 
flexibility in the choice of cs and ?l .  
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