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The proton transfer mechanism in malonaldehyde has been investigated from the points of view of the
topological analysis of the electron localization function and of the catastrophe theory. The calculations
were carried out at the B3LYP hybrid functional level with the ccp-VTZ basis set. Complementary calculations
were performed at the HF, MP2, BLYP, and B3LYP levels with the STO-3G, 6-31G, and 6-31G** basis sets
in order to discuss the stability of the method. The mechanism of the reaction does not involve any
reorganization of the skeleton: it is localized in the hydrogen bond region and involves three chemical structures
corresponding to the reactant, the transition state, and the product. It is shown that the proton detachment is
in fact the covalent breaking of the OH bond, and by symmetry its attachment on the other oxygen is also a
covalent process. The analysis of the catastrophe shows that the reaction is driven by two active coordinates
related to the OH and OO distance and provides a method for the determination of the limiting paths.

1. Introduction

Proton transfer reactions in hydrogen-bonded systems con-
stitute a wide class of processes which have been extensively
studied from both experimental and theoretical viewpoints1-4

owing to their importance in many fields of physics, chemistry,
and biochemistry. These studies are generally focused on the
energetics and on the dynamics of the process, and on the
discussion of the driving force of the proton transfer (i.e.,
tunneling or Renner-Teller effect). The description of the
proton transfer in terms of a reorganization of the chemical
bonds during the reaction has received less attention. Such a
description of chemical processes is nevertheless important for
those interested in identifying “chemically defined” intermedi-
ates in order to get a better understanding of the reaction
mechanism. The proton transfer involves a rather straightfor-
ward detachment/attachment mechanism, and therefore a thor-
ough analysis of the bonding is not expected to yield any new
salient physical insights. However, the simplicity of the
mechanism appears to be an advantage for methodology-oriented
investigations in which well-understood cases are treated in order
to check the applicability of a given technique and to identify
its strengths and weaknesses.

We have recently proposed a method of characterization of
elementary chemical processes5 which relies on the topology
of the Becke and Edgecombe localization function ELF.6 This
method was first applied to the inversion of NH3, to the breaking
of the ethane C-C bond, and to the dissociation of BH3NH3.5

The main objective of the method (i.e., to provide a chemically
revealing picture of the reaction) was reached on these few latter
examples. In the present work, the choice of the reaction, the
malonaldehyde proton transfer, implies an additional complexity
due to a possible synchronous evolution of the delocalized bonds
of the skeleton.

Malonaldehyde is considered as a model system for molecules
exhibiting a strong intramolecular hydrogen bonding. The
intramolecular proton transfer in the ground and lowest excited
states of malonaldehyde was recently thoroughly investigated
by Barone and Adamo7 who concluded that the energetical

barrier of the proton transfer is lower for the ground states than
for the two lowest triplets.

In the conventional Lewis picture of the reaction shown
below, the mechanism involves not only the transfer of the
proton but also a counterclockwise migration of the double
bonds.

However, if one takes into account the different resonant
structures of malonaldehyde, the reaction mechanism may be
somehow different.

The paper is organized as follows: in section 1, the main
lines of the method of analysis are sketched, and section 2
provides the computational details of the calculation and presents
the analysis of the actual case. Mathematical details are given
in the Appendixes.

1.1. Method of Analysis. The method outlined below
considers a chemical reaction as a succession of definite
molecular structures located along the reaction path or in its
neighborhood. It aims to identify such structures, to characterize
the transitions between them, and finally to propose a nonem-
pirical reaction mechanism. Neither the chemical bond nor
molecular structures are observables. These intuitive concepts
belong to a system of representation settled by the chemists on
the basis of experience. The theory of chemical bond essentially
relies on a local description of the matter in which atoms are
linked by electron pairs8 to form molecules within which it is
possible to identify chemically significant regions. Quantum
mechanics is the physical theory which fully explains the
stability and the microscopic properties of molecules. It
provides a nonlocal description which stems from the wave
particle formulation, from the statistical interpretation, and more
practically from the impossibility of partitioning the molecular
Hamiltonian into physically well-defined atomic and bonding
(interatomic) contributions.
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Several methods may be used to characterize the chemical
bond from quantum chemical results. A first group of methods
attempts to localize the molecular orbitals following different
schemes based on the extremization of an orbital related
property.9-11 The choice of the localization procedure is rather
arbitrary. Moreover, as pointed out by England,12 a given orbital
localization scheme sometimes yields multiple solutions cor-
responding to local extrema of the property. The second group
is based on projection techniques in which the wave function
is developed on basis functions located on nuclei. These
methods yield an analysis in terms of bond orders.13-19 Though
they also contain some arbitrariness, these techniques are
available in mostab initio codes and very popular. As a general
rule the output is very sensitive to the quality of the basis set.
The most stable results are obtained with natural population
analysis (NPA).19 However, as mentioned by Bachrach in a
critical review on the population analysis methods,20 NPA is
not free of drawbacks since “it rests on allocating electrons
through an orbital occupancy basis, not in terms of the actual
locations of electrons”. Moreover, bond orders provide a picture
of the molecular structure in which any pair of atoms is (at
least very weakly) bonded.

The deformation electron density is defined by∆F(r ) )
Fmolecule(r ) - ∑AFA(r ) in which FA(r ) denotes the density of
the promolecules (atoms) labeled by A. It is expected to have
its maxima in the bonding regions. However, the absence of
significant accumulation of electron density in interatomic
regions has been reported for a number of covalent bonds.21

As pointed out by Schwarz et al.22-24 and by Kunze and Hall,25

the choice of a spherical-atom promolecule is responsible for a
negligible accumulation which is revealed by oriented-atom
promolecules. The buildup of nonspherical promolecule elec-
tron densities can be achieved by the technique described by
Ruedenberg and Schwarz.26

The topology of the total densityF(r ) has been investigated
in detail by Richard Bader and co-workers within the framework
of the theory of “atoms in molecules”.27 The analysis of the
charge density gradient field yields a partition of the molecular
space into basins of attractors. The attractors (i.e., the local
maxima of the charge density) are usually located on the nuclei;
exceptions have been however evidenced for metal clusters.28

The critical points of the electron density gradient field, those
points at which∇F(r ) ) 0, allow to define bond paths which
form a network called the molecular graph.29 In the topological
theory, the nuclear space configuration is parititoned into a finite
number of structural regions. Within each region, the molecular
graphs are equivalent, and they form an equivalence class called
the molecular structure.29 The molecular structure depicted by
molecular graphs generally agrees with the expectation of
chemical intuition, although unexpected bond paths have been
reported for a few systems.30-32 It should be therefore possible
to exploit this theory to follow the evolution of the molecular
structure during a reaction. This has been successfully done
for a few cases such as isomerizations,33 ring and cage
formations,34 and exceptional situations characterized by a
nonnuclear attractor.35-37

However, the density-based molecular structure theory does
not allow to study reactions as simple as the dissociation of a
homolitic diatomic because the nuclear configuration space
corresponds to a single structural region. It is thus necessary
to investigate in the same spirit other local functions (hereafter
referred to as localization functions) in order to characterize
bonds and lone pairs in molecules rather than atoms in molecues.
Among the possible localization functions we can mention the

Laplacian of the charge density,38,39 the Hunter potential,40 the
function of Luken and Culberson,41 and the function of Becke
and Edgecombe (ELF).6 It is has been shown that the Laplacian
of the charge density and ELF perform partitions of the
molecular space which are consistent with the Lewis description
and with the VSEPR model.39,42-46

The topology of the charge density Laplacina has been
studied38,39,47-50 as a part of Bader’s theory of atoms in
molecules in which attention is mostly focused on the valence-
shell charge concentration. The topological description of the
chemical bond proposed by Silvi and Savin45 relies upon the
gradient field analysis of the electron localization function (ELF)
of Becke and Edgecombe.6 This function, hereafter denoted
asη(r ), is expressed as

in whichD(r ) andDh(r ) are respectively the excess local kinetic
energy due to the Pauli repulsion51

and Dh(r ) is the kinetic energy of the homogeneous electron
gas of densityF(r ). The excess local kinetic energy defined
by eq 2 is the difference between the definite positive kinetic
energy densityTs(r ) ) 1/2∇∇′F(r ,r ′)|r ′)r and the von Weiz-
säcker52 functionalTW(r ) ) 1/8∇F(r ,r ′)|2/F(r ,r ), whereF(r ,r ′)
is the first-order density matrix. The excess local kinetic energy
is a positive quantity53 which is small in the regions of space
where the electrons do not experience the Pauli repulsion and
therefore where parallel spin electrons are far from one another
whereas it is large where they are close to one another. In
such regions ELF is close to 1 and 0, respectively. The
topological analysis of the gradient field ofη(r ) assigns a region
of space, the basin, to each local maximum ofη(r ) providing a
partition of the molecular space analogous to that made in
hydrography to define river basins and watersheds. There are
basically two types of valence basins which have a clear
chemical meaning. On the one hand are core basins encom-
passing nuclei (withZ > 2) and valence basins in the remaining
space. Each valence basin is characterized by itssynaptic order
σ, which is the number of core basins with which it shares a
common boundary.54 In this representation the monosynaptic
basins correspond to the nonbonded pairs of the usual Lewis
picture whereas the di- and polysynaptic ones are related to
bonds. It is worthy of note that the possibility of multicentric
bonds is clearly accounted for by the concept of polysynaptic
basin. For a given system in a given electronic state there is
therefore a 1:1 correspondence (in other words an isomorphism)
between the topological description and the Lewis picture which
gives access to a mathematical model to study the evolution of
this latter. Integrations of the one-electron densityF(r ) and of
the pair functionπ(r1,r2) over the volumeΩi of the ith basin
provide the basin populationNh i:

and its variance

η(r ) ) 1

1 + ( D(r )

Dh(r ))2
(1)

D(r ) ) Ts(r ) - TW(r ) (2)

Nh i ) 〈N〉i ) ∫Ωi
F(r ) dr (3)

σi
2 ) 〈N2〉i - 〈N〉i

2 ) ∫Ωi
∫Ωi

π(r1, r2) dr1 dr2 - Nh i(Nh i - 1)
(4)
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Along a reaction pathway, the nuclear configuration changes
and the bonding, represented by the molecular structure, evolves
accordingly: some bonds are broken, and some others are
formed. In this case, the location function varies parametrically
with nuclear coordinates which form the set of control param-
eters. In the topological model, the transformation of the
bonding finds expression in the appearance and disappearance
of local maxima of the localization function. Thom’s catas-
trophe theory55 is the mathematical theory that enables the study
of the topological changes with respect to the variation of the
control space parameters. A summary of the topological
concepts and of the important mathematical properties of the
model is given in Appendix A. The catastrophe theory has been
first applied to the analysis of the electron charge density of
reacting systems33-36 and more recently extended to the ELF
function.5 These methods identify the subsets of the nuclear
configuration space corresponding to defined chemical structures
and locate their boundaries which are the sets of turning points
between them. They enable us to precisely describe the different
steps of a reaction and therefore its mechanism. Moreover, the
mathematical properties of the model provide additional infor-
mation which is not directly accessible from the sole chemical
considerations; in particular they point out the importance of
topological constraints.

2. Results and Discussion

2.1. Computational Methods. The ab initio calculations
have been performed using the Gaussian94 software.56 The
reaction path has been scanned by the IRC method57 at the
hybrid Hartree-Fock density functional level B3LYP58-61 with
the ccp-VTZ basis set.62,63 The choice of the B3LYP method
and of the ccp-VTZ basis set was done in order to get reliable
optimized structural parameters and a realistic value for the
proton transfer energetical barrier. The proton transfer in
malonaldehyde was previously studied byab initio techniques
from the energetical point of view by several authors7,64-67 who
have shown that electron correlation is necessary to obtain a
realistic value of the proton transfer energy barrier. Experi-
mentally, this barrier is estimated to be of the order of 4.0-5.2
kcal/mol.68 Barone and Adamo7 have studied the dependence
of the proton transfer barrier upon the basis set and the
correlation technique. They showed that the better agreement
with experiment was obtained by CCSD(T)/DZP calculations.
Their calculations also indicated that the B3LYP hybrid
functional58 is an alternative good choice when used with a large
enough basis set (typically polarized valence triple-ú).

The ccp-VTZ basis set used in the present calculations
includes two sets of p and one set of d functions on the
hydrogens and two sets of d and one set of f on the carbon and
oxygen centers and therefore it is expected to yield results at
least as good as those reported in ref 7. The optimized structural
parameters of the equilibrium configuration and of the transition
state are almost identical to those listed in the B3LYP/TZ2P
entries of the first table of Barone and Adamo’s article7 and
therefore have not been reported here. The main structural
discrepancy betweenab initio optimized structures and experi-
mental ones68-70 occurs for the C1C2H2 (see Figure 1 for atom
labels) bond angle which is calculated 8° more narrow than
observed. However, the experimental uncertainty may be quite
large since the authors of the experimental paper70 warn us:
“this value is probably not accurate because of the position of
C2 and H2 close to the axis”. For the transition state the
calculated dipole moment, 2.601 D, lies within the experimental
range of 2.591-2.603 D.70

In order to investigate the stability of the method with respect
to the nature of the approximate wave functions, several
calculations were carried out within the Hartree-Fock, MP2,
BLYP,59-61 and B3LYP58 schemes with the standard STO-3G,71

6-31G, and 6-31G**.72,73

The topological analysis of the ELF function was carried out
with the TopMoD74 series of program developed in our
laboratory.

2.2. Topological Analysis of the Equilibrium and Transi-
tion States. The chemical structure of the malonaldehyde
molecule in its equilibrium geometry as displayed by the
topology of the ELF function is weakly dependent upon basis
set as well as calculation scheme effects. Minimal basis sets,
such as STO-3G, yield a picture of the bonding in which the
C1C2 and C3O2 bonds give rise to a pair of localization basins
symmetrically located on both sides of the molecular plane. The
sum of the V(C1,C2) is calculated to be 4.1 e- whereas that of
the V(C3,O2) one is only 2.2 because of the large transfer from
this basin towards the lone pairs of O2. The STO-3G basis set
does not take into account the possible delocalization of the
bonds in the skeleton which is revealed as soon as split valence
or better basis sets are used. With both 6-31G, 6-31G** and
ccp-VTZ and at any level of calculation considered (HF, MP2,
BLYP, B3LYP) there is only one basin for the C1C2 bond and
another one for C3O2. The population of the former basin
decreases as the basis set is enlarged: 3.68, 3.47, and 3.19 e-

for 6-31G, 6-31G**, and ccp-VTZ, respectively. The C3O2 and
C2C3 basin populations vary in the opposite direction. The
evolution of the basin population with respect to the size of the
basis set correlates with that of the optimized bond lengths: for
instance, the optimized values of the C1C2 distance are 1.334,
1.343, and 1.362 Å for 6-31G, 6-31G**, and ccp-VTZ,
respectively. It is worth noting that the basin populations
corresponding to the CH and OH bonds are almost insensitive
to basis set effects. In fact, these results show that the actual
system rather than the method requires a careful choice of basis
set. Once a basis set retained, the results are very stable with
respect a change of method of calculation: the differences in
the values of a given basin populations are at most of the order
of 0.1 e-. In the following discussion, we will only consider
the ccp-VTZ/B3LYP results.

Several mechanisms may be invoked to describe and interpret
the proton transfer. In a purely ionic process, the motion of
the proton is expected to leave the number of basin constant.
In the initial state the proton is bound to O1 and is located in
the V(O1,H) basin which has a boundary with one of the O2

lone pairs, more precisely with the V2(O2) basin. In the final
state, the proton has left V(O1,H) which has become V2(O1)
accordingly and has entered V2(O2) now transformed into
V(O2,H). In the ionic mechanism, the proton is expected to
pass across the separatrix of the two basins. In a covalent
process, the O1H bond should be broken and the O2H one
formed. This can be achieved either in one step, in which case
the bond dissociation and the bond formation occurring simul-

Figure 1. Labels of atoms.

BATCH: jp6d31 USER: DIV: @xy4s4d/data2/CLS_pj/GRP_jx/JOB_i26/DIV_jp9734282 DATE: 06/11/98

Proton Transfer Mechanism in Malonaldehyde J. Phys. Chem. A, Vol. 102, No. 26, 19985067



taneously there is no variation of the number of basins, or in
two steps with an intermediate chemical structure (that of the
transition state) having one basin more than the reactant. A
piece of information is brought by the analysis of the transition
state which presents a V(H) basin. Therefore, the proton transfer
can be described as a two-step process involving the breaking
of a covalent OH bond and the formation of another one. This
mechanism may be explained by the particular nature of the
proton as a cation. Any cation except the proton is mostly a
closed-shell structure encompassing nuclei with a positive net
charge. The Pauli repulsion, due to the external closed shell,
precludes the formation of a valence shell around the nucleus.
In the case of the proton there is not such a closed-shell structure,
and the net effect on the electron cloud is an accumulation of
density around the proton due to its attractive Coulomb potential.
Moreover, as the density around the proton is rather large it is
energetically advantageous that the Pauli repulsion should be
small in this region. However, the mechanism is not fully
covalent as testified by the V(H) basin population which is 0.44
e- in the transition state.

The populations of valence basins of malonaldehyde which
noticeably vary during the proton transfer are listed in Table 1
for the equilibrium and transition state structures together with
their standard deviations. Figures 2 and 3 display the localiza-
tion domain reduction tree diagrams of these two structures. In
the equilibrium structure, the localization reduction54 of the
valence domains first splits those related to O1, namely V1(O1),
V(C1,O1), and V(O1,H), from the remaining valence domains
indicating that O1 is the most electronegative center. O1

preserves its atomic shell structure up to rather high values of
η(r ) and therefore the two lone pairs are gathered in a single
monosynaptic basin V1(O1) population amounts to 4.04 e-, with
a rather large standard deviation consistent with a rather large
delocalization involving the adjacent V(C1,O1) and V(O1,H)
basins. The second separation involves the domains around O2.
The sum of the monosynaptic basin populationsNh (V1(O2)) +
Nh (V2(O2)) ) 5.19 e- whereasNh (V(C3,O2)) ) 2.28 e- which is
close to a C+-O- picture of the bond. Finally, there is also a
rather large delocalization around C2 involving the V(C1,C2)
and V(C2,C3) disynaptic basins which explains why no double-
bond picture arises from the analysis. The numbers provided
by the basin populations are consistent with the following
resonance between three Lewis structures:

with 0.2, 0.3, and 0.5 as the respective weights.

For the transition state, the localization domains around the
oxygens are well separated from those involving the carbons.
Each oxygen has now two monosynaptic basins for the lone
pairs with a total population equal to 5.29 e-. The protonated
monosynaptic basin contains 0.44 e-. On the carbon skeleton
side, the V(C1,C2) and V(C2,C3) populations are both equal to
2.80 e- and those of V(C1,O1) and V(C3,O2) to 2.07 e- (i.e.,
close to the average of the equilibrium structure populations).
It is worth noting that the chemical structure of the transition
state involves a “dressed” proton.

2.3. Bonding Evolution along the Reaction Path. The
reaction involves three chemical structures along the reaction
path corresponding to the reactant, the transition state, and the

TABLE 1: Populations (Nh ) and Population Standard
Deviations of the Malonaldehyde Basins in Equilibrium and
Transition State Structures

equilibrium structure transition state

basins Nh σ Nh σ

V(C1,C2) 3.19 1.19 2.80 1.15
V(C2,C3) 2.42 1.08 2.80 1.15
V(C1,O1) 1.81 1.04 2.07 1.09
V1(O1) 4.04 1.20 3.44 1.17
V2(O1) 1.85 1.01
V(O1,H) 1.85 0.95
V(H) 0.44 0.60
V(C3,O2) 2.28 1.13 2.07 1.09
V1(O2) 2.81 1.10 3.44 1.17
V2(O2) 2.38 1.07 1.85 1.01

Figure 2. Localization domain reduction tree diagram of malonalde-
hyde in its equilibrium structure.

Figure 3. Localization domain reduction tree diagram of malonalde-
hyde in the transition state structure.
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product. The symmetry of the system implies that the reactant
and the product are identical; there, one half of the full reaction
path, namely the proton detachment from O1 between the
reactant and the transition state, has to be considered. The
proton attachment on O2 is just the inverse process. Fifteen
configurations along this first part of the reaction path have been
selected in order to locate the bifurcation state(s). The true
control space parameter is the one-dimensional reaction coor-
dinate which is actually a function of the 21 internal coordinates.
In order to have access to numerical values, the projection of
the reaction coordinate on the O1H, distanced1, has been
considered hereafter for the proton detachment. For the proton
attachment on O2 one has to considerd2 ) r(O2H). Figure 4
displays the localization domains (i.e., the volumes bounded
by a given isosurface) of malonaldehyde for the nuclear
configuration corresponding to the equilibrium structure (A),
the breaking of the O1H bond (B), and the transition state (C).
The bond dissociation occurs atd1 ) d* ) 1.105 Å: a new
maximum ofη(r ) appears which splits the V(O1,H) basin into
a lone pair basin V2(O1) and the “dressed proton” one V(H).
As shown in Figure 5, the V(O1,H) basin population increases
from 1.85 e- in the equilibrium structure to 2.0 e- at the turning
point. Just after the dissociation, the population of the V(H) is
0.7 e-, which supports the interpretation in terms of a covalent
dissociation. As the system evolves toward the transition state,
the V(H) population decreases being transferred to the V2(O1)
lone pair basin. On the second oxygen atom, the two lone pair
basins are involved in a charge transfer which lowers the

population of V2(O2), the basin located on the H side and
increases that of other one. The symmetric process which forms
the O2H bond involves the same variation in the opposite
direction and the permutation of the oxygen labels. It is
interesting to note that in the whole process the sum of the
population of the lone pair, V(O,H) and V(H) basins is almost
constant. Figure 6 presents the behavior of the skeleton bond
basin populations along the reaction path. The total population
of these basins is also constant and the charge transfers occur
on the one hand from V(C1,C2) toward V(C2,C3) and V(C1,O1)
and on the other hand from V(C3,O2) toward V(C2,C3).

From the point of view of the catastrophe theory, the event
which occurs atd1 ) d* is a bifurcation catastrophe of thefold
type. This means that the appearance of the new local maximum
involves the transformation of awandering point, i.e., a point
at which ∇η(r ) * 0, into a pair of critical points: the new

Figure 4. Representation of ELF localization domains for malonal-
dehyde. (A)η ) 0.85 isosurface for the equilibrium structure showing
the different localization domains associated to the bonds and to the
oxygen lone pairs. The framed domain is related to the V(O1,H) basin.
(B) η ) 0.85 (left) andη ) 0.90 (right) isosurfaces for a configuration
immediately following the bifurcation occurring atd* ) 1.105 Å in
the framed region. The right part emphasizes the appearance of the
V2(O1) and V(H) attractors. (C)η ) 0.85 isosurface for the transition
state structure. The full-line frame shows the V2(O1) and V(H)
localization domains, and the dashed-line one emphasizes the V(H)
and V2(O2). After the second bifurcation, the V(H) and V2(O2) basin
will merge into a unique V(O2,H) basin corresponding to the formation
of the O2H bond.

Figure 5. Populations of the V1(O1), V2(O1), V1(O2), V2(O2), V(O1,H),
and V(H) basins (in e-). At the bifurcation state,d* ) 1.105Å, V(O1,H)
yields two basins, V2(O1) and V(H). The opposite bifurcation takes
place when the HO2 bond is formed.

Figure 6. Populations of the V(C1,O1), V(C1,C2), V(C2,C3), V(C3,O2)
basins (in e-), as a function of the O1H (in Å) distance.
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maximum and a saddle point located on the border surface
between V(H) and V2(O1). A local model of this catastrophe
is given by itsuniVersal unfolding:

in whichx is the space variable taken along the direction joining
the V(O1,H) and V2(O2) attractor of the reactant andb parameter
related to the reaction coordinate. In fact, the behavior of the
ELF function can be represented in a single dimension. Figure
7 displays the graph ofη(x;b) + constant in the region of
interest. Forb < 0 (Figure 7A) there is no critical point in the
framed region within which the universal unfolding is valid
because the derivative

is always negative. For b) 0 (Figure 7B), eq 6 has a double
root for x ) 0, this situation corresponds to the bond breaking.
Figure 7, C and D, display the function forb > 0, just after the
turning point and at the transition state. The parameterb of eq

5 can be identified asd1 - d*. The bond formation on the O2
side is achieved by a second fold catastrophe for which theb
parameter is related tod2 - d*.

The two fold catastrophes described above involve a same
critical point, namely the attractor of the V(H) basin. Therefore,
accoding to the method described in the textbook of Gilmore,75

it is possible to unify the description of the process by collecting
the two fold catastrophes into a higher order catastrophe which
is acuspone in the actual case. The relationship between the
unfoldings of the cusp and fold catastrophe is given in Appendix
B. The unfolding of the cusp catastrophe is given by the
expression

which now involves a second parametera. As in eq 5,b is
related to the O1H and O2H distances, for the energetical
transition state (Figure 4C)b ) 0 whereas for the bifurcation
stateb ) (b*. Therefore,b can be related to an odd function
of the algebraic distance between the projection of the H atom
on the O1O2 direction and the midpoint of O1O2. The second
parameter,a, is always negative. For any bifurcation state the
critical valuesa* and b* fulfill the relationship (see ref 76 and
Appendix B)

Therefore, starting from a couple (a,b) within one of the stable
tautomer’s stability domain, keepingb constant, it is possible
to decreasea up toa* in order to realize the bifurcation as shown
in Figure 8A. In terms of normal coordinates,b is related to
the H-bond fast mode involving the OH stretching whereasa
relies upon the slow mode which is mainly a function ofR, the
O1O2 distance. It is worth noting that the particular evolution

Figure 7. Schematic representation ofη+const. in the region of
interest. (A) Before the bifurcation stated < d*, a < 0, andb < b*.
The universal unfolding applies in the framed region. (B) Atd1 ) d*
a point of the V(O1,H) basin and near its separatrix, becomes degenerate,
a < 0 andb ) b*. This catastrophe generates basins, V2(O2) and V(H);
see Figure 4B. (C) evolution of the degenerate point as distanced
increases,a < 0 and b* < b < 0. (D) This symmetrical structure
corresponds to the transition state,a < 0 andb > 0. On the remaining
reaction path these changes take place in the opposite direction.

η(x;b) + constant) -x3 + bx (5)

dη(x;b)/dx ) -3x2 + b (6)

Figure 8. (A) Critical curve of the cusp catastrophe (b2/8) + (a3/27)
) 0. The shaded area corresponds to the negative forbidden values of
a. Starting from a given point of coordinate (a1,b1) located in the domain
of structural stability I, it is possible to go to the domain III by
decreasing thea parameter. The sole variation ofa does not allow to
reach domain II. (B) and (C) Schematic representation of O1O2 and
O1H before and after the decrease ofa showing the lengthening of the
OH bond.

η(x;a,b) ) - (x4 + ax2 + bx) (7)

b*2

8
+ a*3

27
) 0 (8)
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of the dynamical system upon a variation ofa indicates thata
behaves as-R: the decrease ofa corresponds to an increase
of the O1O2 distance and therefore,b being kept constant, the
short OH bond is lengthened and this ultimately yields the
breaking of the bond (Figure 8, B and C). Thea and b
parameters are the actie parameters of the control space. The
critical curve of the cusp catastrophe (Figure 8A) partitions the
plane into four regions: a shaded forbidden region, the reactant-
like (I), the product-like (II), and the transition state-like (III)
ones. The projection of any reaction path onto the plane defined
by the active control parameter subspace must therefore cross
region III. Indeed, the critical curve represents the projection
of the limiting paths.

The method is particularly stable with respect to the method.
On the one hand, both calculations performed with the 6-31G,
6-31G** and ccp-VTZ basis sets with the HF, MP2, BLYP,
and B3LYP methods yield the same partition of the control
space and the same bifurcation catastrophes at the turning points.
On the other hand, the critical valued* lies in a very narrow
range between 1.10 and 1.12 Å for all calculations except the
6-31G/BLYP one for which the bounds are 1.09 and 1.10 Å.

3. Conclusion

The investigation of the proton transfer in malonaldehyde
presented here shows how the topological analysis of the ELF
combined with the catastrophe theory interpretation of the
turning points enable to discuss the reaction mechanism. From
this analysis it follows that the proton transfer is a two-step
reaction. The first step corresponds to the covalent dissociation
of the OH bond, and the second step is the formation of another
OH bond from an hydrogen atom and an oxygen lone pair. The
process involves an intermediate state in which the hydrogen
is detached and within which a significant electron transfer from
the hydrogen toward the oxygen lone pairs brings its ionic
character to the reaction. The presence of the detached
hydrogen, or “dressed proton”, in the intermediate state is a
consequence of the attractive Coulombic potential of the proton
which has no Pauli repulsion counterpart. There is no bonding
rearrangement in the skeleton but rather a concerted charge
transfer from one bond to another. The catastrophe analysis
enables to identify the active control space parameters, in other
words how many and which are the coordinates that drive the
reaction. Moreover, the discussion of the catastrophe critical
curve provides criteria to determine the limit paths of the
reaction. Finally, at least, in this example, the method appears
very stable with respect to the computational scheme of the
wavefunction.

Appendix A

By definition, adynamical systemis a field of bound vectors
X on a manifold M. For each and every point ofM of
coordinates{m} the equations dm/dt ) X(m) determine a unique
trajectoryh(m). Although the analogy with a velocity field is
purely formal, the method has been widely used to model the
time evolution of many phenomena. The trajectories begin and
end in the neighborhood of points for whichX(m) ) 0. For a
given pointp belonging toM, R(p) andω(p) denote the limit
sets ofp(t) in M corresponding respectively tot f -∞ and to
t f +∞.

A gradient dynamical systemis a dynamical system for which
the vector fieldX derives from a scalar functionV, called the
potential function, that isX ) ∇V. A point is acritical point
if X ) 0, awandering pointotherwise.

The stable manifoldor insetof a critical point is the set of
all the points for which this critical point is anω limit, the
unstable manifoldor outsetthe set of those for which it is anR
limit. The critical points of a gradient dynamical system are
classified according to theirindexsi.e., the number of positive
critical exponents, here the eigenvalues of the Hessian matrix.
The dimension of the unstable manifold of a critical point is
equal to its index. The index of a critical pointm of the vector
field X is denoted byI(X,m). The critical points are also
denoted by a pair of integers (r, s), the rank (number of non-
zero eigenvalues) and the signature (number of positive minus
negative eigenvalues) of the Hessian matrix. In the Euclidean
3-dimensional space, there are four kinds of critical points: the
repellorsof index 3, noted (3, 3) which are the local minima
of the potential function; the saddle points (3, 1) and (3,-1)
of index respectively 2 and 1; theattractors(3, -3) of index 0
which are the local maxima of the potential function. Attractors
are onlyω limits and repellors onlyR limits, whereas saddle
points are both. The stable manifold of an attractor is called
the basinof the attractor. Theseparatricesare the boundary
points, lines or surfaces of two or more basins. They are the
stable manifolds of the saddle points. The number ofhyperbolic
critical points (i.e., without zero critical exponent) satisfies the
phase rule type relationship which is given by the Poincare´-
Hopf theorem:

The sum runs over the critical points of the vector fieldX bound
on the manifoldM andø(M) is the Euler characteristic of the
manifold. For finite and periodic systems inRq, q e 3, the
Euler characteristic is 1 and 0 respectively.

When V, and thereforeX, depend parametrically upon the
set ofcontrol spaceparameters{cR} the number and the type
of the critical points change with the variation of thecontrol
spaceparameters. The domain ofstructural stabilityof a critical
point is a subset of the control space within which this critical
point remains hyperbolic. If all the critical points of a dynamical
system are hyperbolic, the system is structurally stable: a weak
perturbation of the vector field changes neither the index nor
the number of critical points. In the bonding theory such a weak
perturbation may be due to a change in the technique of
calculation of the approximate wave function (basis set, cor-
relation scheme) or to a small displacement of the nuclei.

The point in the control space for which at least one critical
point becomes nonhyperbolic is called abifurcationpoint. At
a bifurcation point abifurcation catastropheoccurs which brings
the system from a domain of structural stability to another. There
are seven elementary catastrophes55 classified according to their
uniVersal unfolding. The universal unfolding is a parametric
polynomial expression which provides a local model of the
potential function in the neighborhood of the critical point
subjected to a bifurcation. The number of independent param-
eters involved in the universal unfolding provides the dimension
of the active control space.

Appendix B

Consider the universal unfolding of the fold catastrophe:

The critical points correspond to the real roots of

∑(-1)I(X,m) ) ø(M) (9)

f(x;a,b) ) x4 + ax2 + bx (10)

df(x;a,b)/dx ) 4x3 + 2ax + b ) 0 (11)
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the number of which is ruled byq ) (b2/8) + (a3/27). Forq >
0, there is one critical point since eq 11 has one real root and
two complex conjugate ones. Forq ) 0 all roots are real and
at least two are equal; this case corresponds to the bifurcation
at which one critical point is degenerate. Finally, forq < 0
there are three critical points.

defines the critical curve of the cusp catastrophe.
Let a* and b* a couple of critical values of the control space

parameters (i.e., lying on the critical curve). Denoting byλ
the double root and byF the remaining one, eq 11 can be written
as

The Taylor expansion off(x;a*,b*) in the neighborhood ofx0

) λ is

The germ of the unfolding is obtained by dropping out the
constant term and the higher order terms; thus with the change
of variablex̃ ) κ(x - λ)

and the fold catastrophe unfolding is obtained by adding the
canonical perturbationbx̃ which corresponds to a small shift of
the origin off the critical curve, i.e.
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