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ABSTRACT: We present a new implementation of continuum solvation models for
semiempirical Hamiltonians that allows the description of environmental effects on very
large molecular systems. In this approach based on a domain decomposition strategy of
the COSMO model (ddCOSMO), the solution to the COSMO equations is no longer
the computational bottleneck but becomes a negligible part of the overall computation
time. In this Letter, we analyze the computational impact of COSMO on the solution of
the SCF equations for large to very large molecules, using semiempirical Hamiltonians,
for both the new ddCOSMO implementation and the most recent, linear scaling one,
based on the fast multipole method. A further analysis is on the simulation of the UV/
visible spectrum of a light-harvesting pigment−protein complex. All of the results show
how the new ddCOSMO algorithm paves the way to routine computations for large
molecular systems in the condensed phase.

SECTION: Molecular Structure, Quantum Chemistry, and General Theory

In the last decades, quantum mechanical (QM) simulations
of molecular properties and processes have moved from the

realm of isolated (gas-phase) molecules to that of by far more
interesting solvated systems. This progress has been largely
made possible due to the coupling of QM approaches to
classical solvation models. Such a coupling has followed two
main strategies; either the classical environment has been
described through molecular mechanics (MM) force fields, or it
has been modeled as a continuum dielectric.1−10 In particular,
the second strategy presents many advantages with respect to
the first one, especially when they are both coupled to QM
descriptions. Continuum models in fact do not require the
knowledge of a suited force field to describe the solute−solvent
interaction but only to define the boundary between solute and
solvent; furthermore, they implicitly include statistical averages,
which instead have to be explicitly taken into account in terms
of many different configurations of the solvent when using
QM/MM formulations. Both of these two aspects have made
continuum solvation models very popular, and nowadays,
almost all of the main software packages have at least one

continuum solvation model as a possible option. The rapid
expansion of QM/continuum approaches has however shown
some intrinsic limitations both from the physical and the
numerical point of view. Physically, continuum models cannot
properly account for specific solute−solvent interactions,
among which hydrogen bonding is the most common and
important example. However, this limit can be rather easily
solved by extending the QM part of the system so as to include
some solvent molecules or using a mixed QM/MM/continuum
formulation.11−17

The numerical liminations are instead more difficult to be
solved even if different effective strategies have been proposed
so far. To understand these numerical issues, we have to recall
that the implementation of continuum solvation models relies
on the definition of a “cavity” that embeds the QM part of the
system and on the introduction of a numerical procedure to
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solve the resulting three-dimensional partial differential
(Poisson’s) equations. Such equations can be solved with
different approaches. The most popular versions of QM/
continuum models use either the so-called dielectric or
conductor boundary conditions (or jumps) at the cavity
surface. The two alternative strategies have led to the two
main families of modern continuum models known as the PCM
(polarizable continuum model) and COSMO (conductor-like
screening model) (see two recent reviews for a more complete
list of references on the two approaches).18,19 In all cases, the
differential equations are recast as integral equations on the
cavity boundary, which can be treated with standard numerical
techniques such as the boundary element method (BEM)
through which the cavity surface is discretized using a mesh.
The BEM is a very effective approach, but it suffers from two

major disadvantages. First, as the integral operator is nonlocal
(it corresponds to the kernel of the Laplacian), the matrix
resulting from the discretization of the integral equation is
dense, and all of its N2 elements are, in principle, nonzero. This
implies N( )2 memory requirements and N( )3 or N( )2

computational cost to solve the linear system by matrix
inversion or with an iterative procedure, where no sparsity can
be exploited when computing the necessary matrix/vector
products. For this last case, it is also to be noticed that if
enough memory is available, the matrix can be built and stored;
if this is not the case (on standard machines, the limit is roughly
1000 atoms), the matrix has to be assembled on-the-fly at each
matrix vector product, further increasing the computational
cost. Furthermore, The BEM matrix is usually very ill-
conditioned; iterative schemes struggle to achieve convergence.
Second, as moving the atoms causes the mesh of the external
surface to change and surface elements to become buried in the
inside of the cavity or exposed, the energy is not smooth with
respect to the nuclei positions, making the use of continuum
solvation models for geometry optimizations or molecular
dynamics simulations either hard or impossible.
In the past decade, a lot of progress has been done on both

shortcomings. As the matrix/vector products necessary for any
iterative procedure involve the computation of either a
potential or an electric field, fast summation techniques like
the fast multipole method20 (FMM) can be successfully
employed in order to achieve linear scaling of both computa-
tional cost and memory requirements; the FMM was
implemented in the context of continuum solvation by
Scalmani and co-workers in 2004.21 Furthermore, a different
strategy to solve the PCM/COSMO equations based on a
variational approach22,23 was presented by some of us with
interesting computational results. To overcome the continuity
problem, more advanced discretization techniques can be used
in order to obtain a smooth solvation energy as a function of
the atomic coordinates; a discretization scheme based on
Lebedev grids, Gaussian basis functions, and switching
functions was proposed for COSMO by York and Karplus in
199924 and extended and generalized independently by
Scalmani and Frisch25 and by Lange and Herbert26,27 in
2010. By using the so-called continuous FMM to compute the
Coulomb interaction between Gaussian densities,28 it is
possible to achieve linear scaling in computational cost also
for continuous implementations.
Recently, a completely different strategy to solve the

COSMO problem has been presented by some of us.29,30

Such a new discretization of the COSMO equations, which we
will refer to as ddCOSMO, is based on Schwarz’s domain

decomposition method and has been proven to be both smooth
and fast; furthermore, linear scaling in both computational cost
and memory requirements with respect to the system’s size is
implicit in the procedure without needing to resort to fast
summation techniques. In two previous papers, the discretiza-
tion has been thoroughly analyzed from a mathematical point
of view,29 and an efficient and parallel implementation has been
proposed30 for a solute described at a classical level of theory.
In this Letter, we present the results obtained by the first
coupling of the ddCOSMO method with QM calculations.
As the focus is here on very large systems, the QM approach

is based on semiempirical Hamiltonians.31−35 In the framework
of semiempirical methods, the electrostatic properties of the
molecular system are modeled with a collection of atomic point
multipoles [Θj]l

m (usually up to the quadrupole term), which
are related to the electronic density matrix by means of a
parametrized linear transformation36

∑Θ = Λ
μν

μν μνP[ ]j l
m

jlm,
(1)

where l and m are multipolar indexes, j refers to an atom, and
the sum over μν runs over the atomic orbitals (AOs). The
ddCOSMO solvation energy assumes, in this particular case, a
very simple expression
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Here, f(ε) is a constant scaling function used to account for the
nonconductor nature of a solvent, M is the number of atoms,
and [σj]l

m is the l,m coefficient of the solution to the
ddCOSMO linear equations Lσ = g on the jth sphere, where
the right-hand side [gj]l

m is the molecular electrostatic potential
weighted with the proper switching factors. All of the details on
the ddCOSMO algorithm can be found in refs 29 and 30, and
more details are also included in the Supporting Information. In
order to couple ddCOSMO to a semiempirical calculation, a
Fock matrix contribution needs to be computed. Such a
contribution can be computed by differentiating the energy
with respect to the atomic multipoles and then using eq 1 to
transform the atomic Fock matrix in the AO basis
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where [sj]l
m is the l,m coefficient of the solution to the

ddCOSMO adjoint problem on the jth sphere and δl≤2 = 1 if 0
≤ l ≤ 2 and vanishes otherwise. Finally
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A complete formulation of ddCOSMO for general QM solutes
will be the object of a future communication.
To summarize, the ingredients of a semiempirical QM/

ddCOSMO implementation are the following. To assemble the
right-hand side g of the ddCOSMO linear system, one needs a
parametrized linear transformation36 between the density
matrix and the set of atomic multipoles (see eq 1), which is
defined by the specific semiempirical method used and contains
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the semiempirical parameters, the solute’s potential at the
cavity, which is computed as the potential produced by the
aforementioned atomic multipoles, and some geometrical
quantities that are related to the ddCOSMO regularization.
Then, to compute the energy given a density, one has to solve
the ddCOSMO linear system and use eq 2; finally, to assemble
the ddCOSMO Fock matrix contribution, the adjoint
ddCOSMO linear system has to be solved, and the two
contributions as in eq 3 have to be assembled (see the
Supporting Information for technical details). The procedure
here described applies with slight differences also to the
ddCOSMO contributions to response theory; as a last remark,
in order to compute the forces, either the derivatives of the
solute’s potential, which are standard quantities, or the
derivatives of the ddCOSMO matrix need to be computed;
these latter have been thoroughly described elsewhere.30

The standard COSMO (or C-PCM) implementation is
somewhat simplified by the fact that the matrix arising from the
discretization of the COSMO integral equation is symmetric; as
a consequence, there is no need to compute the solution to the
adjoint linear system, and the Fock matrix contribution can be
assembled by contracting the solution to the discretized
equation with the potential integrals. In the following, we will
compare the computational effort required by both the
ddCOSMO and the continuum surface charge25 (CSC)
discretization in order to solve the discretized equations and
assemble the Fock matrix contribution, which for ddCOSMO
only includes the effort of solving the adjoint system. Before
doing so, two remarks are mandatory. First, while for
ddCOSMO assembling the potential is straightforward, the
CSC implementation discretizes the apparent surface charge
(ASC) in terms of spherical Gaussian functions at the cavity,
and thus, to compute the potential and the Fock matrix
contributions, integrals such as

∫ ∫ ρ ϕ
Φ =

−
| − | 

x y
x y s

x y
d d

( ) ( )
i
n i

n

3 3 (5)

where ϕ(· − si
n) is a Gaussian function centered at the point si

n

on the cavity, have to be evaluated. In order to use the standard
machinery to compute bielectronic integrals and hence exploit
its efficiency, it is possible to approximate the point-multipolar
distribution ρ(x) with a collection of very spiked (i.e., with
exponents larger that 108) Gaussian basis functions of different
angular momentum (i.e., s, p, and d for standard semiempirical
methods). Notice that the linear scaling techniques used for
Coulomb integrals, such as the continuous FMM, can be
successfully exploited. Second, the use of the FMM to compute
the matrix−vector products for the iterative solution of the
CSC equations introduces a further approximation with respect
to the ones implied by the discretization and two additional
parameters, that is, the maximum angular momentum in the
multipolar expansion and the size of the smallest box.
Furthermore, the performances of the FMM depend on the
geometry of the system, with the best performances for long,
linear molecules and the worst for globular one; this is not the
case for ddCOSMO, where the performances depend more on
the molecular topology, that is, on how many neighbors each
atom has; such a number (between 15 and 25 for van der Waals
cavities) is not affected by the overall molecular shape.
The computational cost of solving the linear system arising

from the COSMO discretization depends on the size of the
matrix, its characteristics, and the numerical procedure, that is,

matrix inversion or iterative solution. This step discriminates
the various algorithms as the size of the matrix is given by the
number of surface elements (NTs) for CSC and by the number
of basis functions (Nb) for ddCOSMO, which is given by the
number of atoms times the number of spherical harmonics used
to expand the local intermediates. Through all of the
simulations, we use Lmax = 10, that is, 121 spherical harmonics
per sphere. These quantities are reported in Table 1 for some
medium- to large-sized systems and can be used to estimate the
overall cost of the computation.

We report in Table 2 the timings of both the solution to the
linear system (labeled σ) and the assembling of the Fock matrix
contribution (labeled F) for the various algorithms and for the
chosen systems. A scaled van der Waals cavity was used for all
of the system, and the solutes were described with the AM1
Hamiltonian.31 For completeness, we also report the timings
for the standard CSC implementation, that is, where the linear
equations are solved by matrix inversion, if feasible, or with an
iterative method without exploiting the FMM machinery. All of
the calculations have been performed on a cluster node
equipped with 2 Xeon E5-2650 processors with 8 cores each
operating at 2.0 GHz and 64 GB of RAM operating at 1.6 GHz.
A locally modified development version of the Gaussian suite of
programs37 has been used for all of the simulations. The
efficiency of the new ddCOSMO procedure is clearly
demonstrated by the reported timings. Of course, as it scales
linearly within computational cost with respect to the size of
the system, ddCOSMO is, for large enough systems faster than
CSC if the N( )3 matrix inversion or the N( )2 iterative
procedure is used; the interesting comparison is with the linear
scaling CSC/FMM implementation. While the CSC/FMM is
already very fast if compared with the standard iterative
procedure, the time needed to solve just once the linear
equations of the solvation model using CSC/FMM compares
with the time for a SCF step for the largest system or even with
the overall computation in vacuo for the other ones; the total
computational effort to solve the SCF problem for the solvated
system is by far larger than the time needed to perform the
same computation for the isolated molecule. It is also
interesting to notice that the crossover between the FMM
implementation and the standard, quadratic one is reached only
for considerably large molecules; for vancomycin (377 atoms),
the N( )2 algorithm is faster than the linear scaling one (20
versus 43 s).
The same is not true for ddCOSMO, which is 1−2 orders of

magnitude faster than the CSC/FMM implementation. This is
the result of two factors; the ddCOSMO matrix is block-sparse
and better conditioned. The ddCOSMO matrix is made by M
× M blocks of size (Lmax + 1)2, where we remind that we have

Table 1. Size of the Systems Used As Benchmarka

system M Ng Nb

vancomycin 377 22294 45617
Hiv-1-GP41 530 28931 64130
l-plectasin 567 31154 68607
glutaredoxin 1277 66996 154517
UBCH5B 2360 100937 285560
carboxylase 6605 272205 799205

aNumber of atoms (M); for CSC, the number of surface elements
(Ng); for ddCOSMO, the number of basis functions (Nb).
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chosen Lmax = 10, and an off-diagonal block of the ddCOSMO
matrix is nonzero only if it is associated with two intersecting
spheres; for a large molecule, the large majority of the blocks
are therefore zero, which makes the single iteration very fast.
Furthermore, while the CSC matrix is ill-conditioned and a
large number of iterations (usually, roughly 60−70) is required
to get convergence, the ddCOSMO matrix is well-conditioned,
and only 20−25 iterations are needed to achieve convergence.
In order to show the potentialities of the new algorithm, we

have computed the UV/visible absorption spectrum of the
light-harvesting complex of the peridinin chlorophyll protein
(PCP), a water-soluble peripheral LH antenna from dino-
flagellate Amphidinium carterae. PCP presents a trimeric
quaternary structure with each monomer consisting of two
domains connected by a loop and related by a two-fold
pseudosymmetry axis.38 Each domain encloses a central
chlorophyll a (CHL) surrounded by four peridinins (PIDs)
so that in each monomeric form, there are two CHLs and the
eight PID pigments closely packed (see Figure 1). The
measured absorption spectra consist of an intense absorption
at 450−550 nm and a small band at 670 nm. The short-
wavelength region is due to the PIDs and to the chlorophyll
Soret bands, which overlap at the short-wavelength side,

whereas the long-wavelength region is due to the Qy
chlorophyll band.
In the present analysis, we have simulated the entire complex

(two CHLs and eight PIDs) at the QM level (namely, 1038
atoms), while the protein/solvent environment has been
represented as an effective dielectric using COSMO with the
static dielectric permittivity equal to ε = 15 and the optical
dielectric permittivity equal to ε∞ = 2.39

We have first performed a geometry optimization of the
complex starting from the crystal structure38 using analytical
gradients in combination with the AM1 Hamiltonian; the
resulting geometry was used for simulating the UV/visible
absorption spectrum at the ZINDO level. To avoid dealing with
a massive number of intruder states, we have restricted the
number of orbitals used to compute the excitation properties to
the 20 highest occupied and 20 lowest virtual. A non-
equilibrium solvation regime was assumed for the vertical
excitation.
The energy profile of the geometry optimization is reported

in Figure 1; the convergence was smooth and without trouble,
and the computation could be carried out on a standard cluster
node in roughly 9 h. Notice that, using the ratio that one can

Table 2. Timings for the Solution of the C-PCM/COSMO Linear Equations and for the Computation of the Fock Operator
Contribution for the Different Algorithmsa

CSC - inversion CSC - iterative CSC/FMM ddCOSMO

system σ F σ F σ F σ F

vancomycin 15 min, 56 s 1 s 20 s 1 s 43 s 1 s 1 s 1 s
Hiv-1-GP41 34 min, 19 s 1 s 1 min, 26 s 1 s 57 s 1 s 1 s 1 s
l-plectasin 39 min, 21 s 1 s 1 min, 35 s 1 s 1 min, 17 s 1 s 1 s 1 s
glutaredoxin 8 min, 54 s 1 s 3 min, 2 s 1 s 2 s 3 s
glutaredoxinb 28 min, 43 s
UBCH5B 94 min 4 s 6 min, 18 s 2 s 4 s 8 s
carboxylase 777 min 22 s 24 min, 42 s 3 s 9 s 13 s

aAll the timings smaller than 1 s have been approximated to 1 s. bThe computation was repeated without the N2 storage for CSC.

Figure 1. Energy profile of the geometry optimization of the PCP light-harvesting complex. The inset reports the optimized structure of the
complex.
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deduct from Table 2, this same computation would take
roughly 1 month if performed using the FMM machinery.
The excited-state computation only took a few minutes, and

the spectrum obtained by convoluting gaussians of 0.15 eV half-
width at half-height centered at the excitation frequencies
computed with ZINDO is reported in Figure 2. The

comparison shows a qualitatively correct agreement; all of the
observed bands are reproduced even if the whole calculated
spectrum is blue-shifted with respect to the experimental one.
Indeed, to accurately reproduce the experimental spectrum, a
better QM level as well as the introduction of vibronic effects
would be necessary. However, it is worth noting that the
inclusion of the environmental effects through the ddCOSMO
red shifts the spectrum with respect to that calculated in vacuo.
This shows the importance that environment effects have in the
simulation of the spectrosocopic properties of light-harvesting
complexes.
In this Letter, we have reported on a new algorithm to solve

the COSMO equations that is characterized by several
promising feature. The algorithm is robust, numerically stable,
and under variational control; furthermore, the number of
parameters needed to define the discretization is very limited;
in particular, the only parameters are the size of the spherical
harmonics basis, the number of grid points used for numerical
integration, the convergence threshold for the iterative solver,
and a regularization parameter. The scaling properties of
ddCOSMO are implicit in the model and do not depend on the
molecular shape; also, approximate fast summation techniques
are not needed, which further reduces the number of
approximations and parameters involved. However, the most
promising feature of ddCOSMO is its computational efficiency;
even when compared with an already fast implementation
based on the FMM, its performances are remarkable as the total
time required per each SCF cycle is reduced, even for very large
systems, from several minutes to a few seconds. This feature is
particularly important if the computation has to be repeated
several times, for instance, in order to compute a statistical
average for a large, flexible molecule or in a (ab initio)

molecular dynamics simulation; the latter, in particular,
becomes now feasible for medium-to-large systems using
semiempirical Hamiltonians and continuum solvation. In
conclusion, ddCOSMO paves the way for the use of polarizable
continuum models for large and very large systems, and its
extension to analytical derivatives allows its application in many
research fields, going from (bio)chemical reactivity, to
spectroscopic properties of supermolecular systems, to
electronic processes involving many interacting molecules
such as energy and charge transfers in photosynthetic systems.
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