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A procedure is presented to fit gridded molecular properties to auxiliary basis sets (ABSs) of Hermite Gaussians,
analogous to the density fitting (DF) method (Dunlap; et al.J. Chem. Phys.1979, 71, 4993). In this procedure,
theab initio calculated properties (density, electrostatic potential, and/or electric field) are fitted via a linear-
or nonlinear-least-squares procedure to auxiliary basis sets (ABS). The calculated fitting coefficients from
the numerical grids are shown to be more robust than analytic density fitting due to the neglect of the core
contributions. The fitting coefficients are tested by calculating intermolecular Coulomb and exchange
interactions for a set of dimers. It is shown that the numerical instabilities observed in DF are caused by the
attempt of the ABS to fit the core contributions. In addition, this new approach allows us to reduce the
number of functions required to obtain an accurate fit. This results in decreased computational cost, which is
shown by calculating the Coulomb energy of a 4096 water box in periodic boundary conditions. Using atom
centered Hermite Gaussians, this calculation is only 1 order of magnitude slower than conventional atom-
centered point charges.

1. Introduction

The simulation of molecular systems is a field of intense
study. Ideally, calculations should be performed with quantum
mechanical methods, however, approximations have to be done
to reduce computational cost. An example is the simulation of
biomolecular systems, where empirical force fields are used for
the calculation.1-5 In general, these force fields rely on the
separation of bonded and nonbonded terms to calculate the intra-
and intermolecular contributions. In the latter case, nonbonded
interactions are separated into a Coulomb contribution deter-
mined by pairwise interactions of point charges centered on
atoms, and a 6-12 Van der Waals term that accounts for the
exchange and dispersion contributions.6 In most cases atom
centered point charges are employed to calculate the Coulomb
term. Several methods have been proposed to obtain these
charges such as population analysis,7 atoms in molecules,8 and
electrostatic potential (ESP) fitting,9-11 to name a few.

Multipolar expansions12-16 have been used to improve the
Coulomb calculation.17-19 Unfortunately, this approach lacks
the ability to describe the charge penetration effects observed
in continuous charge distributions. Solutions to this problem
have been proposed in the form of damping functions.20-22

We have shown that the Coulomb interaction can be
determined accurately by interacting frozen densities.23 The
monomer frozen densities are obtained using the density fitting
(DF) method.24-26 Here the electron density is expanded on
auxiliary basis sets (ABSs) centered on specific sites on the
molecule. This methodology has been the basis for the Gaussian
electrostatic model-0 (GEM-0), where each component of the
ab initio energy decomposition (namely, Coulomb, exchange-
repulsion, polarization, and charge transfer) is calculated with
densities fitted to s-type Gaussian functions.27

GEM-0 has been extended by introducing a fitting basis based
on Hermite Gaussians with angular momentum larger than 0
(s-type functions).28 The use of Hermite Gaussians leads to a
natural multipolar decomposition on the fitting sites, which is
intrinsically finite of order equal to the highest angular
momentum of the ABS employed in the fit. Unfortunately, the
DF procedure employed to determine the fitting coefficients
presents some numerical instability (noise) problems.28

Recently, we have employed Gaussian multipoles to account
for polarization in classical force fields.29 There it was shown
that the use of continuous functions gives a more accurate
interaction than their discrete counterparts. On the basis of these
results, we are motivated in this contribution to explore whether
the use of Gaussians for the fitting of molecular properties results
in a more robust fit, because they allow the exploration of points
closer to the core than point multipoles. We present two fitting
procedures. The first one relies on linear least squares to fit
GEM coefficients for different ABSs to gridded molecular
properties. Additionally, we present results for a nonlinear fit
to s-type Gaussians where the exponents of the basis and the
fitting coefficients are optimized concurrently. The use of
gridded molecular properties allows us to avoid fitting points
near the core that show up as outliers in the standard least
squares fit, in a manner similar to ESP fitting.9-11

In the following section we discuss the methodologies
employed for the fitting procedure. Subsequently, we present
results for the determination of intermolecular electrostatic and
exchange interaction energies for a set of molecules. These
results are compared to constrained space orbital variations
(CSOV)30,31 decomposition results.

2. Methods

In this section we present the theory and computational details
used for this study. In subsection 2.1 we provide a brief
overview of the DF method and linear-least-squares and
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nonlinear-least-squares procedures as applied to Hermite Gaus-
sians. Subsequently, in subsection 2.2 we briefly review the
methods to calculate intermolecular Coulomb and exchange
energies from fitted densities. Finally, in subsection 2.3 we
present the details of the calculations.

2.1. Least-Squares Methods.As mentioned above, the
intermolecular contribution can be calculated from frozen
density obtained from DF methodology. Here, the approximate
density can be obtained by fitting the analytic molecular density
using an ABS,F̃ ) ∑kckk(r), whereF̃ is the approximate density,
k(r) are the Hermite Gaussians of the ABS andck are the fitting
coefficients.

The fitting coefficients are obtained by minimizing the
Coulomb self-interaction energy of the error (Eself).25,26 This
procedure leads to a linear system of equations:

where Pµν is the ab initio density. From eqs 1 above, the
coefficientsck can be determined by settingc ) G-1j, wherej
) ∑µ,νPµν〈µν|l〉 and G ) 〈k|l〉. In principle, G is symmetric
and positive definite; in practice however, this matrix is almost
singular and therefore care must be taken during the diagonal-
ization to obtain its inverse. Previously we have used both
singular value decomposition (SVD) and Tikhonov regulariza-
tion32 to diagonalizeG.23,28 In these studies we observed that
noise is still a problem, which was suggested to come from the
attempt of the ABSs to fit the density at the nuclear cores.

In the present contribution, we are interested instead in using
grids of molecular properties for the fitting procedure instead
of the analytic density matrix. The use of numerical grids allows
the discarding of points at and near the core, thus effectively
neglecting the core contributions. In this case, this is achieved
by minimizing the following fitting function:

whereyR(r i) corresponds to theab initio molecular property of
interest at pointi, andỹR(r i,ck) is the same property evaluated
with thekth ABS element at the same point on the grid, andR
denotes the molecular property(ies) of interest. For example, if
the molecular property of interest is the density,F(r), then
yF(r i) ) F(ri), and ỹF(r i,ck) ) ∑kkk(ri). Finally, W(r) is the
weighting function for the point on the grid, which can be
defined in several ways,10,11 andwR is the relative weight for
propertyR.

Equation 2 can be minimized by using the Newton Raphson
(NR) method. Supposec0 is a column vector of an initial guess
set of parameters; then a better estimate of the parameters c
can be found by solving

whereg0 is the gradient andH0 is the Hessian ofø2 with repsect
to c evaluated atc0. In the case of a linear optimization,ø2 is
a quadratic function of the parameters and the NR method is
exact, i.e., the optimal set of parametersc can be obtained by
solving eq 3 once.

In the case of nonlinear optimization, that is, whenỹR(r i,ck)
is a nonlinear function of the parametersck (e.g., of the Gaussian
exponents), eq 3 has to be solved iteratively. When the parameter
guessc0 is near the optimal set of parameters, the Hessian can
be approximated by neglecting the second derivative ofỹR(r i).

However, when the parameter guess is far from the minimum,
a steepest descent search direction should be used. The
Levenberg-Marquardt nonlinear-least-squares fitting algo-
rithm32 prescribes adding a large constant matrix toH0 to take
small steps in the direction of the gradient, i.e., letF ≡ H0 +
ωI , and solvec - c0 ) -F-1g0. As the estimate for the best
set of parametersc iteratively improve,ω gradually lowers until
F = H0. At this point, the parameters converge quadratically
near the minimum.

As was the case for the analytic DF in our previous study,
we have used Tikhonov regularization for the inversion of the
Hessian for the linear-least-squares procedure. In this method,
the equation to be minimized is modified by addingλ∑kck to
eqs 1 or 2. In this way, the redundant basis set contributions
can be penalized by modifyingλ.28 In this case, as in our
previous studies, we have used a reference local frame for each
fitting site to transfer the calculated fitting coefficients.28

2.2. Intermolecular Coulomb and Exchange Interactions.
We have previously shown that Coulomb and exchange
intermolecular interactions may be calculated from frozen
monomer fitted densities.23,27,28In the former case, the Coulomb
interaction using fitted densitiesF̃ is obtained by

whereZA i represents the nuclei on molecule A,F̃A represents
the approximate density of molecule A,ZBj represents the nuclei
on molecule B, andF̃B represents the approximate density of
molecule B.

In the case of the exchange contribution, we have used the
overlap model initially proposed by Wheatley and Price,33 which
we have shown to be applicable using the DF formalism.27

HereK is a fitting parameter obtained from a linear regression
of the overlap of charge density versus the CSOV value, and
Ωr ≈ ∫F̃A(rA) F̃B(rB) dr is the overlap of fitted densities.

2.3. Computational Methods.The above procedures were
implemented on a Fortran90 program developed by the authors.
In all cases, the grids for the molecular properties were generated
from relaxed one-electron density matrices obtained at the
B3LYP/6-31G(d) level using the Gaussian98 program.34 Once
the desired density matrix was obtained, our program was
employed to generate the desired grids, which were in turn used
to fit the coefficients. In the case of the linear-least-squares
method, a grid step-size of 0.17 Å was employed, whereas for
the nonlinear fit, the step-size was reduced to 0.05 Å. The
ABSs employed are A1 and P1 as used in our previous studies
unless stated otherwise, also, the geometries of the 10 water
dimers correspond to those investigated previously.28

We have considered three molecular properties for the linear-
least-squares fit: density, ESP and electric field. Additionally,
we have investigated the fitting procedure using all these
properties weighted evenly. Rectangular grids with evenly
spaced points have been implemented in our code to test the
fitting procedure.

In all cases the weighing function was used such that points
on the grid that were at or below a certain cutoff distance to

∂Eself
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every atomic nuclei were discarded. Note that this is somewhat
similar to the ESP fitting method; however, in this case there
is no long-range cutoff. Furthermore, we have used smaller inner
cutoffs than for conventional ESP charge fitting procedures
because in this case the fitting functions are continuous (Hermite
Gaussians). In the calculations below, the inner cutoffs range
from 0.2-1 au for the linear and 0.76-1.89 au for the nonlinear-
least-squares fits. Finally, the total charge of the molecules was
kept constant by using the method of Lagrange multipliers to
include the constraint in the fitting procedure.

3. Results

Electrostatic and exchange intermolecular interactions were
calculated to test the fitting coefficients obtained from the
gridded molecular properties. In this section we present the
results from these calculations compared to CSOV. In subsection
3.1 we present the results for the investigation of the quality of
the fit with respect to the cutoff distance for a set of 10 water
dimers.35,36In this case, grids of molecular density, ESP, electric
field and “all” grids (evenly weighted) are fitted to the A1 and
P1 ABSs. In addition, results are discussed for the same dimers
from the nonlinear fit to three and seven s-type Hermite
Gaussian functions. Subsequently, in subsection 3.2 we present
results for the canonical water dimer, an ammonia-water dimer
and a methane-water dimer comparing intermolecular Coulomb
interaction energies obtained with the numerical fit and from
DF and their dependence withλ. Finally, in subsection 3.3 we
present results for intermolecular exchange interactions for the
ten water dimers. In all cases the fitted grids are rectangular
unless otherwise stated.

3.1. Intermolecular Coulomb for Water Dimers. In our
previous studies we have noted that the ABSs can be placed on
different points and need not be restricted to the atomic centers.
On this basis, we have fitted two sets of coefficients, one consists
of five fitting sites that include the three atomic centers as well
as bond midpoints. The second set only comprises ABSs
centered on the atoms.

The results obtained for the intermolecular Coulomb interac-
tion are in good agreement with the reference CSOV calculations
for both A1 and P1. Tables 1 and 2 show the calculated average
and maximum error for all grids fitted to a single molecule with
ABSs on the atoms and midpoints. As can be seen, in the cases
of the ESP and field fitted coefficients, as well as when fitting
all five grids (density, ESP and three components of the field)

the absolute average error with respect to CSOV is around 0.2
kcal/mol for most cases and is relatively stable as the cutoff
distance is varied. For the fit of the density grid, the quality of
the fit is very poor for both ABSs for large cutoffs and only
improves at close range for P1 and very close range for A1 as
would be expected. The Coulomb interactions obtained from
the distributed multipoles extracted from the Hermite coef-
ficients are very stable for both A1 and P1 in all cases except
for the density grid, with errors around 0.85 kcal/mol (see
Supporting Information).

Tables 3 and 4 present the results for the errors with respect
to CSOV for the grids fitted to a single water molecule with
ABSs centered only on the atoms. In this case only three values
for the cutoff were explored. As was the case above, the
coefficients obtained from the fit of the density grid have a larger
error than the other coefficients. However, in the case of the
A1 ABS the average error is not as large as before and, in fact,
it increases as the cutoff decreases. Note that a more sophisti-

TABLE 1: Absolute Average (Maximum) Error in Coulomb Interaction, in kcal/mol, with Respect to CSOV Using Hermite
Gaussians for the 10 Water Dimers When Fitting Grids to A1 on 5 Sitesa

cutoff (au)

cube(s) 1.0 0.8 0.6 0.5 0.4 0.2

all 0.20 (0.51) 0.23 (0.47) 0.25 (0.48) 0.27 (0.48)
density 1.45 (3.06) 1.40 (2.53) 1.38 (2.45) 1.44 (2.46) 1.44 (2.46) 0.23 (0.50)
ESP 0.06 (0.16) 0.12 (0.28) 0.15 (0.39) 0.15 (0.39) 0.15 (0.39) 0.18 (0.39)
field 0.26 (0.54) 0.14 (0.28) 0.18 (0.43) 0.21 (0.56) 0.21 (0.56) 0.22 (0.60)

a Cutoffs are in au. “All’’ refers to fitting all cubes with even weight.

TABLE 2: Absolute Average (Maximum) Error in Coulomb Interaction, in kcal/mol, with Respect to CSOV Using Hermite
Gaussians for the 10 Water Dimers When Fitting Grids to P1 on 5 Sitesa

cutoff (au)

cube(s) 1.0 0.8 0.6 0.5 0.4 0.2

all 0.07 (0.13) 0.09 (0.18) 0.10 (0.21) 0.11 (0.22)
density 2.80 (5.93) 1.45 (3.07) 0.67 (2.27) 0.22 (0.76) 0.23 (0.75) 0.19 (0.75)
ESP 0.04 (0.12) 0.04 (0.11) 0.05 (0.16) 0.05 (0.16) 0.05 (0.16) 0.06 (0.18)
field 0.07 (0.13) 0.09 (0.15) 0.11 (0.19) 0.05 (0.16) 0.11 (0.20) 0.15 (0.34)

a Cutoffs are in au. “All’’ refers to fitting all cubes with even weight.

TABLE 3: Absolute Average (Maximum) Error in Coulomb
Interaction, in kcal/mol, with Respect to CSOV Using
Hermite Gaussians for the 10 Water Dimers When Fitting
Grids to A1 on 3 Sitesa

cutoff (au)

cube(s) 1.0 0.5 0.2

all 0.05 (0.13) 0.12 (0.30) 0.16 (0.32)
density 0.43 (1.06) 0.52 (1.16) 1.14 (2.17)
ESP 0.11 (0.17) 0.19 (0.34) 0.17 (0.30)
field 0.10 (0.27) 0.13 (0.28) 0.18 (0.37)

a Cutoffs are in au. “All’’ refers to fitting all cubes with even weight.

TABLE 4: Absolute Average (Maximum) Error in Coulomb
Interaction, in kcal/mol, with Respect to CSOV Using
Hermite Gaussians for the 10 Water Dimers When Fitting
Grids to P1 on 3 Sitesa

cutoff (au)

cube(s) 1.0 0.5 0.2

all 0.10 (0.18) 0.17 (0.39) 0.19 (0.48)
density 0.53 (1.42) 0.45 (1.05) 0.55 (1.49)
ESP 0.12 (0.30) 0.11 (0.21) 0.12 (0.24)
field 0.13 (0.38) 0.21 (0.67) 0.18 (0.52)

a Cutoffs are in au. “All’’ refers to fitting all cubes with even weight.

Fitting Molecular Properties to Hermite Gaussians J. Phys. Chem. A, Vol. 111, No. 47, 200712051



cated cutoff, for example, based on atom type, would likely
improve our results.

Another striking result is that A1 gives better results when
no midpoints are employed. This may be due to the fact that in
A1, the basis is more balanced for atoms and the addition of
midpoints increases the noise in the fitting procedure. Further-
more, note that when no midpoints are used with A1, the errors
fall well below 0.2 kcal/mol for every grid except the density
one. The multipoles obtained from these coefficients give
reasonable results for the intermolecular Coulomb, with average
errors between 0.7 and 1.0 kcal/mol (see Supporting Informa-
tion).

In addition, the intermolecular Coulomb interaction of the
canonical water dimer (dimer 1) was determined using coef-
ficients calculated from 50 randomly oriented water molecules
for the A1 ABS using 3 and 5 sites to test the robustness of the
fitting procedure. The average interaction energy corresponds
to -8.33 and-8.15 kcal/mol for the 5 and 3 fitting site models,
respectively, with an absolute average (maximum) error of 0.03
(0.08) and 0.31 (1.48) kcal/mol.

On the basis of these results, a test was performed to calculate
the Coulomb energy on an example 4096 water box in periodic
boundary conditions, using an improved version of the extension
of the particle mesh Ewald (PME) method.28,37The calculation
for this system using the 3 center A1 coefficients fitted from
ESP, on a single Xeon CPU at 3.6 GHz takes 2.29 s. In contrast,
the same system in sander using TIP3P charges takes 0.2 s on
the same computer. Thus, there is only 1 order of magnitude
difference between the grid fitted ABS on atoms and ESP fitted
point charges, with the added advantage that the ABSs show
much better accuracy (see below).

The neglect of points close to or at the atomic centers may
lead to poor intermolecular interactions at close range. To test
this, the intermolecular energies were calculated using the
canonical water dimer (structure 1 from the 10 dimers), at
different distances (see Figure 1). In this case only the
coefficients obtained from the electrostatic field with a cutoff
of 1.0 au were employed. It is observed that indeed, the error
in Coulomb intermolecular interaction increases as the distance
decreases; however, the error is still small at hydrogen bonding
(H-bonding) distances. In fact, this trend is observed for both
the 5 and 3 site models.

For the nonlinear fit, an atom centered model (3 fitting sites)
and a model of seven fitting sites were employed. The seven
sites for the latter model are located on the atoms (3), bond

midpoints (2), and electron lone pairs (2). The fitting coefficients
and the exponents for the Hermite Gaussians, were optimized
concurrently for a range of inner cutoffs, fitting only to the ESP.
In this case only a single s-type Hermite Gaussian was used at
each fitting site; in addition, an outer cutoff of 2.8 Å was
employed. As can be seen from Table 5, the errors for the atom
centered only model show reasonable agreement with an average
error of 0.34 kcal/mol at an inner cutoff of 1.70 au (0.9 Å),
although they exhibit a strong dependence with respect to inner
cutoff value.

The seven point model shows better agreement with CSOV,
with an average error around 0.20 kcal/mol for a range of cutoffs
(see Table 6). For this model, there is a smaller dependence
with respect to the inner cutoff value, compared to the 3 site
model above. Note that the nonlinear fit procedure is equivalent
to optimizing a molecular ABS, in contrast to the linear fit,
where pre-optimized atomic ABSs are employed. Furthermore,
the nonlinear fit provides the advantage of a smaller number of
Hermite functions, however, there is an added difficulty in the
fitting procedure because stable fits can only be found with a
limited number of Gaussian functions.

3.2. λ Dependence.Tables 7-9 show the calculated inter-
molecular Coulomb interaction for the canonical water dimer,
a water-ammonia dimer and a water-methane dimer, respec-
tively. In all cases the interactions were calculated with
coefficients obtained from DF, as well as fitted from ESP and
field grids with a cutoff of 1.0 au, for a range ofλ from 10-2

to 10-8. Note that in this case we have also included results for
a large ABS (g03), which was generated from the automatic
auxiliary basis generator in Gaussian03.38

As can be seen from these results, the coefficients obtained
from the fit to the numerical grids show less variation with
respect to theλ used for the fit, as compared with the DF ones.
Additionally, as observed above, the coefficients fitted to the
A1 ABS with numerical grids show better agreement with
CSOV than the DF ones. This is more apparent in the water
dimer, where the interaction energy with DF coefficients varies
from -9.77 to-7.55 kcal/mol, compared to-8.00 to-7.83
kcal/mol for field grids (CSOV) -8.32 kcal/mol). In the case
of ESP fit, the coefficients show stability between 10-2 and
10-7 and break down whenλ ) 10-8.

In the case of the multipoles extracted from the Hermite
coefficients, the same trend is observed between the analytic
(DF) and numerical (grids) fit, albeit to a lesser extent. For
example, in the case of the water dimer with A1 ABS the
calculated intermolecular Coulomb interaction with DF coef-
ficients varies around 1 kcal/mol when theλ is varied, with an
average value of-6.70 kcal/mol for the interaction. In contrast,
the variation for the coefficients fitted from both the ESP and
field grids vary less than 0.1 kcal/mol along the entireλ range,
with an average interaction value of-6.60 and-6.75 kcal/
mol for ESP and field, respectively.

On the basis of the results above, it was decided to test the
intramolecular interactions to determine the source of the
dependence with respect toλ. Because, for all practical purposes,
the difference between the DF and grid fits is the neglect of the
core contributions for the latter, it is possible to compare
intramolecular energies calculated with coefficients from both
procedures. From these results it is observed that the error in
the DF fit does indeed come from the attempt of the ABS to fit
the core, and this error is reduced by increasing the quality of
the ABS, e.g., from A1 to P1.

For example, for A1, the nuclear-electron intramolecular
energies fromab initio, DF and field grids fit with 1.0 au cutoff

Figure 1. Water dimer (structure 1) Coulomb interaction energies from
Hermite coefficients from electrostatic field grids (cutoff) 1.0 au)
for a range of distances.
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are-198.886,-198.944, and 248.572 au, respectively. As can
be seen, the DF fitted density is in agreement to theab initio
one; however, there is an error of 0.06 au due to the ABS not
fitting the core contribution correctly because of its small size.
On the other hand, the intramolecular energy calculated with
the coefficients fitted from the field grids does not agree with
theab initio one, and it even has the wrong sign. This is due to
the neglect of the grid points within 1 au of the atomic cores.
However, once the ABS does not have to fit the core contribu-
tions, it can perform better fitting the valence, which is the part
involved in inter-molecular interactions.

Furthermore, this may also be explained by calculating the
electrostatic field components withab initio and DF. As noted
in our previous study,23 the molecular properties calculated with
DF are in good agreement with their respectiveab initio values
at points not close to the cores. For instance, for a water
molecule in the standard geometry used in this study, the three
components of the field at the O atom position are-0.126784,
0.0, 0.0 and-0.33168, 0.0, 0.0 au for ab initio and A1 fitted
with DF, respectively. In contrast, the values at 0.5 and 2.0 Å
are 3.958363, 0.0, 0.0 (3.970649, 0.0, 0.0) and 0.020407, 0.0,
0.0 (0.020234, 0.0, 0.0) au forab initio (A1), respectively. As

TABLE 5: Absolute Average (Maximum) Error in Coulomb Interaction with Respect to CSOV in kcal/mol, for Nonlinear
Hermite Fit When Fitting ESP Grids to s-Type Hermites Only, 3 Site Modela

cutoff (au)

1.89 1.70 1.51 1.32 1.13 0.94 0.76

0.36 (0.77) 0.34 (0.70) 0.60 (1.01) 0.93 (1.58) 1.27 (2.15) 1.61 (2.69) 1.89 (3.15)

a Cutoffs are in au. Only one s-type Hermite function is employed on each site.

TABLE 6: Absolute Average (Maximum) Error in Coulomb Interaction with Respect to CSOV in kcal/mol, for Nonlinear
Hermite Fit When Fitting ESP Grids to s-Type Hermites Only, 7 Site Modela

cutoff (au)

1.89 1.70 1.51 1.32 1.13 0.94 0.75

0.27 (0.71) 0.17 (0.35) 0.22 (0.42) 0.34 (0.64) 0.38 (0.82) 0.31 (0.88) 0.25 (0.88)

a Cutoffs are in au. Only one s-type Hermite function is employed on each site.

TABLE 7: Water -Water Coulomb Interaction, Structure 1 (CSOV ) -8.32) for Analytic Density Fitting (DF), and Numerical
Fitting for ESP and Field Gridsa

A1 P1 g03

λ full DF ESP FLD full DF ESP FLD full DF ESP FLD

10-2 -9.77 (-5.91) -8.12 (-6.60) -8.00 (-6.75) -6.84 (-6.27) -8.41 (-6.33) -8.41 (-6.33) -9.46 (-5.77) -8.92 (-6.61) -8.30 (-6.53)
10-3 -9.15 (-6.61) -8.34 (-6.59) -8.04 (-6.80) -8.08 (-6.44) -8.40 (-6.42) -8.40 (-6.42) -8.90 (-6.04) -8.50 (-6.60) -8.20 (-6.54)
10-4 -7.90 (-6.73) -8.39 (-6.60) -8.05 (-6.81) -8.59 (-6.22) -8.35 (-6.50) -8.35 (-6.50) -8.63 (-6.30) -8.21 (-6.51) -8.24 (-6.54)
10-5 -7.85 (-6.69) -8.38 (-6.61) -8.02 (-6.78) -8.44 (-6.21) -8.33 (-6.51) -8.33 (-6.51) -8.38 (-6.47) -8.24 (-6.52) -8.26 (-6.54)
10-6 -7.94 (-6.70) -8.33 (-6.63) -7.90 (-6.75) -8.33 (-6.48) -8.29 (-6.52) -8.29 (-6.52) -8.30 (-6.54) -8.25 (-6.51) -8.27 (-6.51)
10-7 -7.96 (-6.71) -7.87 (-6.63) -7.86 (-6.74) -8.32 (-6.59) -8.21 (-6.52) -8.24 (-6.53) -8.31 (-6.55) -8.47 (-6.57) -8.27 (-6.48)
10-8 -7.95 (-6.72) -5.63 (-6.62) -7.83 (-6.75) -8.32 (-6.59) -8.20 (-6.53) -8.18 (-6.54) -8.32 (-6.55) -8.14 (-6.50) -9.12 (-6.48)

a Numbers in parentheses correspond to multipoles (kcal/mol).

TABLE 8: Ammonia -Water Coulomb Interaction for DF, and Numerical Fitting for ESP and Field Grids (CSOV ) -1.17)a

A1 P1 g03

λ full DF ESP FLD full DF ESP FLD full DF ESP FLD

10-2 -1.51 (-1.15) -1.26 (-0.90) -1.18 (-0.91) -1.04 (-0.89) -1.22 (-0.86) -1.23 (-0.84) -1.16 (-0.90) -1.18 (-0.84) -1.17 (-0.89)
10-3 -1.39 (-1.06) -1.20 (-0.90) -1.12 (-0.92) -1.19 (-0.94) -1.20 (-0.88) -1.20 (-0.88) -1.13 (-0.89) -1.17 (-0.88) -1.16 (-0.89)
10-4 -1.23 (-1.01) -1.18 (-0.90) -1.11 (-0.93) -1.18 (-0.93) -1.20 (-0.90) -1.22 (-0.90) -1.17 (-0.89) -1.17 (-0.90) -1.16 (-0.89)
10-5 -1.14 (-0.95) -1.18 (-0.90) -1.12 (-0.92) -1.24 (-0.89) -1.19 (-0.91) -1.21 (-0.90) -1.16 (-0.90) -1.16 (-0.90) -1.16 (-0.89)
10-6 -1.12 (-0.93) -1.19 (-0.90) -1.17 (-0.92) -1.27 (-0.89) -1.20 (-0.91) -1.20 (-0.89) -1.16 (-0.90) -1.15 (-0.89) -1.16 (-0.89)
10-7 -1.11 (-0.93) -1.22 (-0.90) -1.19 (-0.93) -1.29 (-0.89) -1.19 (-0.90) -1.21 (-0.89) -1.16 (-0.90) -1.01 (-0.82) -1.16 (-0.88)
10-8 -1.12 (-0.93) -1.18 (-0.90) -1.19 (-0.93) -1.30 (-0.89) -1.19 (-0.91) -1.22 (-0.89) -1.16 (-0.90) -1.17 (-0.81) -1.16 (-0.87)

a Numbers in parentheses correspond to multipoles (kcal/mol). All interactions were calculated with corresponding coefficients, e.g., A1 ESP
coefficients for both H2O and NH3, or P1 FLD for both H2O and NH3.

TABLE 9: Methane-Water Coulomb Interaction for DF, and Numerical Fitting for ESP and Field Grids (CSOV ) -0.42)a

A1 P1 g03

λ full DF ESP FLD full DF ESP FLD full DF ESP FLD

10-2 -0.56 (0.17) -0.36 (0.09) -0.25 (0.12) -0.25 (0.27) -0.47 (0.10) -0.45 (0.09) -0.43 (0.09) -0.39 (0.14) -0.41 (0.10)
10-3 -0.54 (0.06) -0.38 (0.09) -0.37 (0.11) -0.45 (0.12) -0.45 (0.07) -0.38 (0.08) -0.41 (0.10) -0.42 (0.11) -0.41 (0.10)
10-4 -0.22 (0.09) -0.40 (0.09) -0.41 (0.09) -0.52 (0.05) -0.44 (0.09) -0.38 (0.08) -0.41 (0.10) -0.42 (0.10) -0.42 (0.10)
10-5 -0.18 (0.10) -0.41 (0.09) -0.40 (0.08) -0.55 (0.08) -0.44 (0.09) -0.42 (0.11) -0.41 (0.10) -0.43 (0.09) -0.43 (0.10)
10-6 -0.31 (0.10) -0.42 (0.09) -0.41 (0.09) -0.53 (0.09) -0.44 (0.11) -0.45 (0.11) -0.41 (0.10) -0.44 (0.09) -0.42 (0.10)
10-7 -0.41 (0.10) -0.44 (0.09) -0.42 (0.10) -0.50 (0.10) -0.44 (0.11) -0.46 (0.09) -0.42 (0.10) -0.43 (0.10) -0.42 (0.10)
10-8 -0.43 (0.10) -0.41 (0.10) -0.42 (0.10) -0.48 (0.10) -0.44 (0.11) -0.47 (0.08) -0.42 (0.10) -0.45 (0.06) -0.42 (0.11)

a Numbers in parentheses correspond to multipoles (kcal/mol). All interactions were calculated with corresponding coefficients, e.g., A1 ESP
coefficients for both H2O and CH4, or P1 FLD for both H2O and CH4.

Fitting Molecular Properties to Hermite Gaussians J. Phys. Chem. A, Vol. 111, No. 47, 200712053



can be seen, the error decreases dramatically as we move away
from the core.

To put the above results in context, the electric field
contributions at the same points using CHELPG9 fitted charges
have been calculated in the same geometry. We have used
CHELPG charges because these are obtained from a similar
procedure. In this case, CHELPG (charges from electrostatic
potentials using a grid based method) charges are fitted to
reproduce the molecular electrostatic potential at a number of
points around the molecule. The calculated field components
are -0.136775, 0.0, 0.0;-0.872098, 0.0, 0.0 and 0.018767,
0.0, 0.0 at the O core, 0.5 and 2.0 Å, respectively. Notably, the
CHELPG charges give better agreement at the core than DF.
The error at 0.5 Å is very large, as is to be expected because
this point is outside the cutoff values. However, note that even
at 2.0 Å, the error for the permanent field is 1 order of magnitude
larger for CHELPG charges compared with DF (1.0 vs 0.1 kcal/
mol).

Moreover, it is interesting to point out that the intermolecular
Coulomb interaction calculated with these charges shows an
rms deviation of 1.58 kcal/mol with respect to CSOV (see Table
10). Compare this result with the average errors of the grid
fitting (linear and nonlinear), which range between 0.46 and
0.19 kcal/mol for the nonlinear fit and are well below 0.2 kcal/
mol for the linear fit. However, note that the intermolecular
Coulomb energies calculated with the CHELPG charges are
relatively close to the totalab initio basis set superposition error
(BSSE) corrected intermolecular interaction energies for several
of these water dimers. However, there are some cases where
the totalab initio energies differ by around 1 kcal/mol compared
to the Coulomb energies from CSOV depending on the dimer
orientation.

As can be seen, the total energies are very close to the
Coulomb energy calculated with ESP fitted charges, as previ-
ously noted by Dunitz and Gavezzotti.39 Therefore, for a
conventional nonpolarizable pairwise force field, the Van der
Waals term only has to correct a very small part of the total
energy, relying on error cancellations. However, if polarization
is to be included, the error will be 2-fold. First, the use of a
classical polarization model will produce errors because the
permanent fields calculated with the ESP fitted charges are
incorrect, as shown above. Additionally, it is to be expected
that the Coulomb interaction from CHELPG charges for a
random orientation will not be close to the total energy, thus
the Van der Waals term will most likely fail in canceling this
error.

3.3. Intermolecular Exchange for Water Dimers.Finally,
the coefficients obtained from the grid fit were tested for the
calculation of the intermolecular exchange interactions for the
ten water dimers. Here, only two values ofλ were investigated,
1.0 and 0.5 au. In the case of the density grid fitted coefficients,
theλ values considered were 0.5 and 0.2 instead because these
were the values that gave reasonable Coulomb interactions
energies. For all results shown in Tables 11and 12 theK values
for the overlap model were obtained from a linear regression
to all ten water dimers (see Supporting Information).

As can be seen from Tables 11 and 12, the coefficients
obtained from fitting ESP, field, and all cubes evenly weighted
show good agreement with CSOV, especially in the case of P1
where the errors are all at or below 0.2 kcal/mol. In the case of
the density grid, it is interesting to point out that in the case of
A1, the error increases asλ decreases opposite to the Coulomb
results. This may be due to the fact that, as explained in the
previous subsection, the ABS may be trying to fit the core,
whereas for the overlap model, it is the valence contributions
that are important for the determination of the intermolecular
exchange interaction.33 These results also justify empirical
models such as the sum of interactions between fragmentsab
initio (SIBFA), which includes an exchange-repulsion term
based on valence-valence interactions only.22,40

In the case of the nonlinear fit, the coefficients corresponding
to the best average Coulomb interaction, cutoff of 1.89 and 0.75
au for 3 and 7 site fits, respectively, were used to calculate the
exchange interaction. For the 3 site model, an absolute average
error of 0.37 kcal/mol was obtained, with a maximum error of
1.0 kcal/mol. In the case of the 7 site model, the absolute average
and maximum errors are 0.4 and 1.26 kcal/mol, respectively.

Finally, the energy scan performed in subsection 3.1 was
explored for the exchange interaction. Again, only the coef-
ficients obtained from the electrostatic field grids with a cutoff
of 1.0 au were employed. As can be seen from Figure 2, the
trend observed for the Coulomb interactions is followed for
exchange. That is, the error is small at medium and long range
and increases as the distance between the monomers decreases.
Another possible source of error is the calculation of theK

TABLE 10: Counterpoise Corrected Total Energies, CSOV Coulomb and CHELPG Coulomb Intermolecular Interactions for
the 10 Water Dimers, in kcal/mol

dimer

1 2 3 4 5 6 7 8 9 10

total ab initio -5.62 -4.94 -4.91 -4.20 -3.80 -3.73 -3.07 -1.20 -3.07 -2.33
CHELPG Coulomb -5.31 -4.90 -5.08 -4.66 -4.33 -4.51 -3.57 -0.99 -4.07 -3.22
CSOV Coulomb -8.32 -7.02 -7.00 -6.23 -5.59 -5.43 -4.35 -1.31 -4.79 -3.09

TABLE 11: Absolute Average (Maximum) Error in
Exchange Interaction, in kcal/mol, with Respect to CSOV
Using Hermite Gaussians for the 10 Water Dimers When
Fitting Grids to A1 on 5 Sitesa

cutoff (au)

cube(s) 1.0 0.5

all 0.33 (0.69) 0.18 (0.49)
densityb 0.15 (0.42) 0.76 (1.16)
ESP 0.15 (0.41) 0.27 (0.54)
fieldc 0.23 (0.61) 0.31 (0.82)

a Cutoffs are in au. “All’’ refers to fitting all cubes with even weight.
b Values are for cutoffs at 0.5 and 0.2 instead of 1.0 and 0.5,
respectively.c Value for cutoff of 1.0 corresponds to 0.8 instead (see
text).

TABLE 12: Absolute Average (Maximum) Error in
Exchange Interaction with Respect to CSOV, in kcal/mol,
Using Hermite Gaussians for the 10 Water Dimers When
Fitting Grids to P1 on 5 Sitesa

cutoff (au)

cube(s) 1.0 0.5

all 0.14 (0.34) 0.20 (0.45)
densityb 0.48 (1.23) 0.39 (1.23)

ESP 0.15 (0.38) 0.20 (0.45)
field 0.16 (0.34) 0.20 (0.45)

a Cutoffs are in au. “All’’ refers to fitting all cubes with even weight.
b Values are for cutoffs at 0.5 and 0.2 instead of 1.0 and 0.5, respectively
(see text).
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parameter for the overlap model; in this case, theK was
calculated from the fit to one single point on the curve
(equilibrium distance of the water dimer).

4. Conclusions

A method has been developed for the determination of fitting
coefficients for ABSs based on the fitting of gridded molecular
properties, as well as a nonlinear fit that allows the concurrent
optimization of coefficients and exponents in the basis set. These
coefficients may be used for the determination of intermolecular
Coulomb and exchange interaction energies. The molecular
properties used in this study include density, ESP, electrostatic
field, and a combination of all three. In all cases it was shown
that a robust fit can be achieved by neglecting the grid points
close to the atomic cores. This procedure also shows that, by
neglecting the core contributions, the coefficients are less
dependent on the parameters of the fitting procedure. By fitting
to grids, it is possible to use less fitting sites, which leads to
increased computational efficiency. This is demonstrated by the
fact that a single energy calculation for a 4096 water box takes
roughly 1 order of magnitude more time for the fitted Hermites
than for conventional point charges. In addition, it was shown
that the coefficients obtained from the numerical fitting can be
also used to determine the exchange interaction by means of
the overlap model. Alternative grids and higher order Hermites
for the nonlinear fit are currently under investigation.
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