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Many-Body Exchange-Repulsion in Polarizable Molecular
Mechanics. I. Orbital-Based Approximations and
Applications to Hydrated Metal Cation Complexes

Robin Chaudret,[a,b] Nohad Gresh,[c] Olivier Parisel,[a,b] and Jean-Philip Piquemal[a,b]*

We have quantified the extent of the nonadditivity of the

short-range exchange-repulsion energy, Eexch-rep, in several

polycoordinated complexes of alkali, alkaline-earth, transition,

and metal cations. This was done by performing ab initio

energy decomposition analyses of interaction energies in

these complexes. The magnitude of Eexch-rep(n-body, n > 2) was

found to be strongly cation-dependent, ranging from close to

zero for some alkali metal complexes to about 6 kcal/mol for

the hexahydrated Zn2þ complex. In all cases, the cation–water

molecules, Eexch-rep(three-body), has been found to be the

dominant contribution to many-body exchange-repulsion

effects, higher order terms being negligible. As the physical

basis of this effect is discussed, a three-center exponential

term was introduced in the SIBFA (Sum of Interactions

Between Fragments Ab initio computed) polarizable molecular

mechanics procedure to model such effects. The three-body

correction is added to the two-center (two-body) overlap-like

formulation of the short-range repulsion contribution, Erep,

which is grounded on simplified integrals obtained from

localized molecular orbital theory. The present term is

computed on using mostly precomputed two-body terms and,

therefore, does not increase significantly the computational

cost of the method. It was shown to match closely Ethree-body
in a series of test cases bearing on the complexes of Ca2þ,
Zn2þ, and Hg2þ. For example, its introduction enabled to

restore the correct tetrahedral versus square planar preference

found from quantum chemistry calculations on the

tetrahydrate of Hg2þ and [Hg(H2O)4]
2þ. VC 2011 Wiley Periodicals,

Inc. J Comput Chem 32: 2949–2957, 2011
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Introduction

Nonadditivity is an essential feature of intermolecular interac-

tions within multimolecular complexes. It could either enhance

the intermolecular interaction energies, as in the case of sev-

eral multiply H-bonded complexes, or reduce them, as in the

case of several multiply coordinated complexes of metal cati-

ons.[1,2] Energy decomposition analysis (EDA) techniques per-

taining to quantum chemistry (QC)[3–7] allow to unravel the

contributions to the interaction energy which are responsible

for nonadditivity. This is essential to evaluate the ability QC-

derived polarizable molecular mechanics (PMM) potentials to

account for it.[1,8–10]

In recent years, several QC and PMM studies showed that it

could be traced back predominantly to the second-order con-

tributions: namely induction (polarization plus charge transfer)

and dispersion. Until now, despite some QC studies,[2,11–14] lit-

tle attention was given to the study of first-order many-body

effects in molecular mechanics (MM). Thus, despite some nota-

ble exceptions,[1,10,15–20] MM techniques generally do not

attempt to reproduce an individual exchange-repulsion contri-

bution and resort instead to Lennard–Jones-like van der Waals

(vdW) terms reproducing it along with dispersion and other

mixed terms. Of course physics is more complex and if the

Coulomb interaction is formally a two-body quantity, the

exchange-repulsion contribution is not. Indeed, exchange-

repulsion is associated to Pauli repulsion, and its evaluation

requires the computation of a first-order (frozen) wave

function, which must respect the antisymmetry principle. To

do so, the molecular orbitals (MO) of the considered final com-

plex are built on the frozen MOs of the individual interacting

fragments computed separately that are then submitted to a

necessary orthogonalization. Such an orthogonalization pro-

cess affects the final values of the energies, and, therefore, on

the whole, the exchange-repulsion can exhibit nonadditive

characters that are usually believed to be less important in the

literature.[2] But is it always the case? In a pioneering work,

Lybrand and Kollman[11] included a three-body exponential
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term to account for nonadditivity in the polyhydrated com-

plexes of Mg2þ and Ca2þ, along with an explicit polarization

contribution. Because this was performed without a direct

comparison with EDA computations, it could not be possible,

however, to ascribe such a term to a well-defined contribution.

The purpose of the present work, which will bear on several

biologically relevant metal cations, is to seek for the nonaddi-

tivity of the repulsion energy to quantify it in hydrated metal–

cation complexes (denoted as [M(H2O)x]
nþ). Indeed, if such a

quantity were not negligible for metals where a large number

of electrons is concentrated, its noninclusion into a PMM for-

malism attempting to separately reproduce all the QC fea-

tures[1,18] would be a problem for an accurate reproduction of

the interaction energies. In the first part of this article, the

nonadditivity of the short-range exchange-repulsion in a series

of [M(H2O)6]
nþ complexes is evaluated by EDA. The cations

denoted as M are: (a) the Naþ, Kþ, Rbþ, Cuþ, Agþ, and Auþ

monovalent cations; and (b) the Mg2þ, Ca2þ, Sr2þ, Zn2þ, Cd2þ,
Hg2þ, and Pb2þ divalent cations. As we investigate the impor-

tance of three-body interactions versus the higher order terms,

the influences of the choice of the basis sets and pseudo-

potentials are discussed. In the second part, an implementa-

tion of a three-body exponential term, added to the orbital

overlap–based S2/R þ S2/R2 repulsion,[18] is put forth in the

context of the SIBFA PMM method.[1] The validity of this term

to account for Eexch-rep nonadditivity is tested on several com-

plexes of Ca2þ, Zn2þ, and Hg2þ.

Ab initio Evaluation of Exchange-Repulsion
Many-Body Effects within Metal Cation–Water
Clusters

Ab initio EDA

Scope on the computation of exchange-repulsion energies At

the Hartree–Fock (HF) level, the interaction energy between

two or more fragments can be decomposed into four contri-

butions:

DE ¼ Ecoul þ Erep þ Epol þ ECT;

namely, Coulomb/electrostatics and exchange-repulsion at first

order and polarization and charge-transfer at second order.

This study will only focus on the second of the two first-

order contributions, namely the exchange-repulsion term. EDA

computations were performed with the reduced variational

space (RVS) procedure.[4]

The RVS scheme constructs the final complex MO on the

orbitals of the isolated monomers (which were precomputed

in their respective basis set), it is then possible to select varia-

tional spaces including or excluding the virtual orbitals of a

selected molecule in the construction of the ‘‘multimolecular

Fock matrix’’ or to freeze the orbitals of a chosen monomer.

From this computational procedure, one gets two types of

contributions depending on the choice of the variational space

namely frozen (first order) or unfrozen/relaxed (second order).

We will focus here on the first order, which is the sum of the

electrostatic and exchange-repulsion energies computed on

the MO of the isolated interacting entities, and corresponds to

the antisymmetrized Hartree product of the isolated monomer

wave functions. In that case, the occupied orbitals of all frag-

ments remain frozen with no possibility of relaxation into the

virtual orbitals. Therefore, the only effect leading to a change

in the MO/SCF energies is linked to the necessary orthogonali-

zation of the monomers MOs.

Thus, in RVS, the total exchange-repulsion is computed fol-

lowing a three-step procedure: (1) computation of the com-

plex first-order energy (E1) computed as the difference of the

total Self Consistent Field (SCF) energy of the final complex

built on the frozen monomer MO’s and of the respective SCF

energies of the isolated monomers; (2) computations of the

Coulomb energy (Ecoul); (3) computation of Eexch-rep as: Eexch-rep
¼ E1–Ecoul.

The intermolecular three-body and higher order repulsion

energies are computed as follows:

E3�body
rep ðCompÞ ¼ EtotrepðCompÞ � E2�body

rep ðCompÞ (1)

E2�body
rep ðCompÞ ¼

X
A2Comp

X
B6¼A2Comp

½EtotrepðABÞ�
( )

(2)

where Etotrep (AB) is the pair repulsion energy between mole-

cules A and B within the whole complex Comp, Etotrep is the

exchange-repulsion energy in the whole complex (Comp), and

E
3�body
rep is the three-body and higher terms.

The four-body and higher order repulsion terms were also

calculated for some complexes. Its formulation derives from

the following equations:

E4�body
rep ðCompÞ ¼ EtotrepðCompÞ � E2�body

rep ðCompÞ
� E3�body

rep ðCompÞ (3)

and

E3�body
rep ðCompÞ ¼

X
A;B;C2Comp

fEtotrepðABCÞ � E2�body
rep ðABCÞg (4)

with the previous definition for Etotrep and E
2�body
rep , E

4�body
rep being

as previously the four-body and higher terms and Etotrep (ABC) the

total energy of the cluster formed of the molecules A, B, and C

and. E
2�body
rep is the total two-body energy for the complex ABC

Equations (3) and (4) can be summarized as:

E4�body
rep ðCompÞ ¼ EtotrepðCompÞ �

X
A;B;C2Comp

fEtotrepðABCÞg

þ ðN� 3Þ �
X

A;B;2Comp

fEtotrepðABÞg (5)

In this equation, N denotes the total number of molecules

in cluster Comp.

Equation (5) is a more convenient form than eq. (3) because

energy decomposition methods give the total repulsion

energy for given complexes such as Etotrep (AB), Etotrep (ABC), and

Etotrep (Comp).
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E
3�body
rep was computed for a large range of hexahydrated

metal–cation complexes at the same level of theory as for the

energy minimization. We will resort throughout to a notation

in which the cation basis set is given first, followed, under the

slash sign, by the water basis set. For Ca2þ and Zn2þ, tests
were performed with other basis sets and pseudo-potentials.

We adopt the notation ‘‘SBK’’ to denote the CEP 4-31G(2d)

basis set given by Stevens et al.[21] We have thus considered

SBK/SBK, 6-31þþG** (6-31G** for Zn2þ)/6-31þþG**, and

6-31þþG** (6-31G** for Zn2þ)/aug-cc-pVDZ.[22] This enabled

to quantify the importance of the pseudo-potential and of

the basis set on E
3�body
rep . Finally, E

4�body
rep was computed for

Hg2þ and Zn2þ complexed by six first-shell water molecules.

Computational details. For all metal cations (Naþ, Mg2þ, Kþ,
Ca2þ, Cuþ, Zn2þ, Rbþ, Sr2þ, Agþ, Cd2þ, Auþ, Hg2þ, and Pb2þ),
model complexes with six water molecules were built with an

octahedral geometry. They were optimized at the HF level to

be consistent with the EDA computations performed at this

level of theory. Such a choice ensures the practicability of the

computations and a clear definition of the exchange-repulsion

energy within the RVS EDA procedure.[4] All the calculations

were performed using the 6-31þþG**[23] basis set on the

metal ligands For the metal cations, they resorted either to

the Stuttgart pseudo-potentials (SDD),[24] as is the case for

Cuþ, Zn2þ, Rbþ, Sr2þ, Agþ, Cd2þ, Auþ, Hg2þ, and Pb2þ, or to

the 6-31þþG** full electron basis set, as is the case for Naþ,
Mg2þ, Kþ, and Ca2þ. Frequencies were calculated for every

optimized structure to ensure that all structures could be asso-

ciated to an energy minimum. For Ca2þ and Zn2þ, tests were

performed with other basis sets and pseudo-potentials. We

have thus considered SBK/SBK, 6-31þþG** (6-31G** for Zn2þ)/
6-31þþG**, and 6-31þþG** (6-31G** for Zn2þ)/aug-cc-
pVDZ.[22] This enabled to quantify the importance of the

pseudo-potential and of the basis set on E
3�body
rep . Finally,

E
4�body
rep was computed for Hg2þ and Zn2þ complexed by six

first-shell water molecules. A representation of an octehadral

geometry is provided in Figure 1 using the Ca[H2O]
2þ com-

plex. In addition, the xyz coordinates of all the complexes are

displayed in Supporting Information S1

Results

Repulsion energy for the different cation with six water

molecules at HF/SDD/6-311G** level

The many-body repulsion effects were computed for a broad

range of cation–ligand complexes, and the values are reported

in Table 1. These encompass alkali, alkaline-earth, transition,

and heavy metal cations. The present study highlights different

characteristics from a cation to another.

We first observe that E
3�body
rep is cooperative for alkaline cati-

ons, namely Naþ, Kþ, and Rbþ, but its magnitude is very small

(from �0.3 to �1.). Alkaline-earth cations exhibit both cooper-

ative (for Ca2þ and Rb2þ) and anticooperative (Mg2þ) effects

with values around 62 kcal/mol. The negative values could be

due to a slight predominance of the negative ‘‘pure exchange

contribution,’’ which is large enough to overcome the actual

repulsion term as found in early QC studies.[2]

For transition and heavy metal cations, the three-body

exchange-repulsion has always positive (i.e., anticooperative)

values ranking from 1.03 kcal/mol for Auþ to 6.79 for Zn2þ.
The cations belonging to the copper column have lower

three-body effects than those belonging to the zinc column.

Auþ presents a specific case due to its preference for a linear

geometry[25] instead of the octahedral-like one adopted by the

other cations investigated. Therefore, it shows very small

many-body repulsion.

Figure 1. Representation of the [Ca(H2O)6]
2þ in the octahedral form com-

puted at the B3LYP/6-31þþG** level.

Table 1. Values (kcal/mol) of the repulsion energy in the complexes of

monovalent and divalent metal cations with six water molecules.

Metal E
2�body
rep Etotrep E

3�body
rep E

3�body
rep (% Etotrep)

Naþ 36.6 36.5 �0.1 �0.3

Mg2þ 90.0 92.0 2.0 2.2

Kþ 20.5 20.0 �0.5 �2.3

Ca2þ 75.9 73.5 �2.4 �3.2

Cuþ 53.1 56.4 3.3 5.8

Zn2þ 101.3 108.1 6.8 6.3

Rbþ 17.6 17.4 �0.2 �1.0

Sr2þ 65.4 63.8 �1.6 �2.5

Agþ 47.1 49.4 2.3 4.7

Cd2þ 88.0 91.7 3.7 4.0

Auþ 157.6 158.6 1.0 0.7

Hg2þ 89.7 94.3 4.6 4.9

Pb2þ 56.7 59.4 2.7 4.6

E
2�body
rep ¼ P

molecule A

P
molecule B 6¼A

½ErepðA; BÞ�
( )

where Erep(A,B) denotes the pair repulsion energy. Etotrep is the repulsion

energy of the whole complex. E
3�body
rep (Comp) ¼ Etotrep(Comp) � E

2�body
rep

(Comp) is the repulsion due to three-body and higher interactions.

Body Exchange-Repulsion in PMM
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The nonadditivity of Eexch-rep was also calculated in some

of these arrangements but in the absence of the bound metal

cation. Such arrangements had very small many-body

exchange-repulsions, amounting to less than 10% of the total

many-body effects found when the cation is present.

Thus, on removal of the calcium cation from [Ca(H2O)6]
2þ

complex, the water–water total exchange-repulsion amounts

for 2.37 kcal/mol, whereas the two-body quantity is about 2.64

kcal/mol leading to a �0.27 kcal/mol only many-body contribu-

tion. The same test was performed at the geometry of the

[Zn(H2O)6]
2þ complex. Here, the water–water total exchange-

repulsion amounts for 12.36 kcal/mol, whereas the two-body

quantity is about 13.97 kcal/mol leading to a �1.6 kcal/mol

only many-body contribution. In these two cases, the magni-

tude of the water–water total exchange-repulsion interaction

depends exponentially on the water–water distances, which are

higher in the case of calcium (Ca(II): d(OAO) ¼ 3.47 Å; Zn(II):

d(OAO) ¼ 3.02 Å) as Eexch-rep decreases exponentially with dis-

tance. Therefore, in light of the high values of the total water–

cation exchange-repulsion values, the important interactions to

consider for the nonadditive effects are the cation–ligand ones

and the water–water interactions can be neglected.

The nature of the computed effects is complex as it is

obtained as a difference between the full exchange-repulsion

including all many-body effects and the sum of all additive

two-body terms. The level of treatment of the system could,

then, modify the magnitude of the nonadditive term calcu-

lated with the present basis set. In the following section, we

investigate the influence of the calculation level on the many-

body exchange-repulsion energy.

Influence of the basis set and of the pseudo-potential on E
3�body
rep

Calculations of the nonadditivity of the exchange-repulsion

were carried out for different basis sets (double and triple

zetas) for the water molecules. Results are reported in Table 2.

The basis set level appears to have little impact on the magni-

tude of many-body effects. Thus, for the hexahydrate com-

plexes of both Ca2þ and Zn2þ, such magnitudes change by

less than 0.5 kcal/mol. This represents less than 0.5% of the

total repulsion energy. On the other hand, representation of

the metal cation by a full-electron set as contrasted to a va-

lence set with a pseudo-potential affects more the amplitude

of the three-body term. Thus, for the hexahydrate complex of

Zn2þ, the basis set choice out of 7 can induce on this term a

change of up to 2 kcal/mol. For this complex, Eexch-rep
amounts to 100 kcal/mol, so this represents a relative error of

2% for this contribution. The core-electrons in a pseudo-poten-

tial calculation are not taken into account explicitly in the anti-

symmetrization of the wave function, which could explain the

influence of the pseudo-potential used.

To conclude, on the one hand, the choice of the basis set could

appear not to be critical concerning the nonadditivity of the

exchange-repulsion energy. It must be recalled, on the other

hand that in the present computations, the wave functions of

the frozen monomers used to construct the final dimer wave

functions within the RVS procedure are computed using the

monomer-centered basis elements. It was shown that the use of

the dimer basis for each monomer could affect the final values of

exchange-repulsion[26] acting as a ‘‘basis set superposition error"-

like effect on exchange-repulsion, which also modifies the Cou-

lomb contribution. By construction, the present RVS computa-

tions are monomer-centered consistent with the fact that all

PMM methods resort to QC-derived properties of the isolated

fragments to compute intermolecular interactions, namely multi-

poles and polarizabilities. Therefore, this indirect basis set effect

will always be present in the computation with small- and me-

dium-sized basis sets and would only vanish upon progressing

toward the complete basis set limit. Such an effect could be par-

tially corrected by the use of a many-body PMM first-order term.

In the following section, we consider the influence of four-

body and higher body repulsion terms.

Evaluation of higher order many-body effects

We have evaluated the amount of four-body and higher body

repulsion terms on the hexahydrate complexes of Ca2þ, Zn2þ,
and Hg2þ. The values reported in Table 3 never exceed 0.2%

of the total repulsion and can be thus considered as negligi-

ble. It is then fully justified to limit our force-field implementa-

tion to the inclusion of many-body repulsion through a three-

body correction.

PMM Modeling of the Many-Body
Exchange-Repulsion Term

SIBFA is a force field[1] based on the reproduction of the indi-

vidual contributions of the ab initio QC interaction energy.

Table 2. Hexahydrated complexes of Ca21 and Zn21.

Cation Method E
2�body
rep Etotrep E

3�body
rep

E3�body
rep

(% Etotrep)

Ca2þ SDD/6-31þþG** 75.9 73.49 �2.37 �3.1

6-31þþG**/6-31þþG** 73.0 71.1 �1.9 �2.6

6-31þþG**/augccpvdz 66.0 64.6 �1.3 �2.0

6-311þþG**/6-311þþG** 72.4 70.6 �1.8 �2.5

Zn2þ SBK/SBK 82.4 87.5 5.1 6.2

SDD/6-31þþG** 101.3 108.1 6.8 6.7

6-31G**/6-31þþG** 109.9 114.8 4.9 4.5

6-31G**/augccpvdz 95.9 100.7 4.7 4.9

6-31G**/6-311þþG** 108.4 113.3 4.9 4.5

Values (kcal/mol) of E
2�body
rep , Etotrep, and E

3�body
rep for different full electron

and pseudo-potential basis sets. SBK, SDD, and 6-31G** or 6-31þþG**

basis sets are used for the cations and 6-31þþG**, aug-cc-pvdz, and

6-311þþG** are used for water.

Table 3. Values (kcal/mol) of E
2�body
rep , Etotrep, E

3�body
rep , and E

4�body
rep in the

hexahydrate complexes of Ca21, Zn21, and Hg21 cations.

Metal E
2�body
rep Etotrep E

3�body
rep

E3�body
rep

(% Etotrep) E
4�body
rep

E4�body
rep

(% Etotrep)

Ca2þ 75.9 73.5 �2.4 �3.2 0.1 0.1

Zn2þ 101.3 108.1 6.8 6.7 �0.3 �0.2

Hg2þ 89.7 94.3 4.6 4.9 0.0 0.0

R. Chaudret et al.
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Each SIBFA contribution is the counterpart of a QC one and

could be refined on adding new physical effects independently

from the other contributions. Details about its formulation can

be found elsewhere.[1,3] Concerning the first-order terms within

SIBFA, the electrostatic (Coulomb) and repulsion contributions,

namely EMTP* and Erep, do not have nonadditivity features. EMTP

is computed as a sum of intermolecular multipole–multipole

interactions. The multipoles (charges, dipoles, and quadru-

poles) are located on the atoms and bonds centers of the mol-

ecules or molecular fragments. They are derived from their ab

initio MO by a procedure given by Vigné-Maeder and Clav-

erie.[27] EMTP* is augmented by an explicit penetration term

using a formulation due to Piquemal et al.[28] As the Coulomb

energy is exactly additive, we will therefore focus in this study

on the sole exchange-repulsion contribution Erep.

In the present formulation of SIBFA, the exchange-repulsion

energy is a two-body quantity that is expressed as an approxi-

mation of the overlap between the localized molecular orbitals

of the interacting molecules. The expression of the exchange-

repulsion energy is detailed below.

Expression of the SIBFA two-body exchange repulsion

General formulation

Within the SIBFA formalism, the two-body exchange-repulsion

energy between two interacting molecules, namely A and B, is

computed as a sum of bond–bond, lone pair–lone pair, and

bond–lone pair repulsions:

Erep ¼
X

p�q bond of A

X
r�s bond of B

repðp� q; r � sÞ
" #

þ
X

p�q bond of A

X
Lb lone pair of B

repðp� q; LbÞ
24 35

þ
X

La lone pair of A

X
r�s bond of B

repðLa; r � sÞ
" #

þ
X

La lone pair of A

X
Lb lone pair of B

repðLa; LbÞ
24 35 (6)

In this equation, p–q and r–s denote bonds between two

adjacent atoms of molecules A and molecule B, respectively,

and La and Lb denote a lone pair on molecules A and B,

respectively (see Figure 2). We use the subscript i to denote a

bond or a lone pair La belonging to A and subscript j to

denote a bond or a lone pair belonging to B. We then have

the following equations:

Erep ¼
X
i2A

X
j2B

repði; jÞ
" #

(7)

rep(i,j) was previously proposed[29] to have a S2/rþS2/r2

dependency, in which S denotes a representation of the inter-

molecular overlap between electron densities on the bonds or

the lone pairs, and R denotes the distance between their

respective centroids. The formulation of Erep was already given

in previous articles.[18,30,31] We recast it below, as it enables to

introduce the three-body correction in the proper context.

The bond–bond repulsion can be expressed using overlap

integral-like terms (represented as S) between every atom (p,

q, r, and s) involved in the interacting bonds (p–q and r–s) as

defined by Gresh et al.[30]:

repðp� q; r � sÞ ¼ Noccðp� qÞNoccðr � sÞ

� C1ð
S1p�q;r�sÞ2
Rp�q;r�s

þ C2
ðS2p�q;r�sÞ2
ðRp�q;r�sÞ2

" #
(8)

with

Sip�q;r�s ¼ Sipr þ Sips þ Siqr þ Siqs; i ¼ 1 or 2 (9)

Here, Rp–q,r–s is the distance between the midpoint of the

bonds p–q and r–s. Nocc(p–q) and Nocc(r�s) are the occupation

numbers of the bonds p–q and r–s (usually they are equal to

2.0), respectively.

In eq. (9), the bond/bond overlap, Sip�q;r�s, is developed as a

sum of atom/atom overlaps, Sipr . This is based on the idea that

the bond orbital can be decomposed in terms of two s-type

atom-centred orbitals. Sipr is then approximated to be propor-

tional to an exponential function:

Sipr ¼ h2spj2pri ¼ Mpre
�aiqpr ; i ¼ 1 or 2 with qpr ¼

rpr

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðUpUrÞ

p
(10)

where Up and Uq are the effective radii of the atoms p and q,

respectively, and rpr is the distance between them. The propor-

tionality coefficient, Mpr, is characteristic of the nature of the

centers p and r involved:

M2
pr ¼

Kpr
vpvr

1� Qp

Nval
p

 !
1� Qr

Nval
r

� �
(11)

where Kpr is a constant characteristic of the two atomic num-

bers of p and r, mp and mr are the total number of chemical

bonds of p and r, respectively, Nval
p and Nval

r denote the

Figure 2. Visualization of different terms involved in the SIBFA interaction

between an atom q of a bond named p–q and a lone pair Lb of an

atom b.
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number of valence electrons of p and r, respectively, and Qp

and Qr are the partial charges of p and r, respectively. For non-

metal atoms (H, C, N, O, S, P), the Kpq values are computed as

products of atomic Kp and Kq parameters. The values originally

determined by Claverie[32] were retained.

In eq. (8), the first term within square brackets depends on

the multiplicative coefficient C1 and the exponent a1 of the ex-

ponential. The second term depends on C2 and a2. These four

parameters are general to all molecules and were originally fit-

ted in ref. 18 in order for Erep to reproduce the numerical values

of the QC short-range exchange-repulsion, Eexch-rep, in the linear

and bifurcated water dimers on performing variations of the

OAH distance. The values of these parameters[18] were retained.

Modulation of Erep as a function of: (a) the nature of the atoms

involved, if different for O and H; (b) the basis set used, is done

by the effective vdW radii (Up and Uq) in the fitting procedure.

Finally, C1 and C2 of eq. (8) and of the following equations

are constants obtained by fitting Erep to Eexch-rep on water

dimers.[18]

The bond–lone pair repulsion, as previously described, can

be expressed using overlap integrals between atoms p and q

and lone pair Lb,

repðp� q; LbÞ ¼ repðLb;p� qÞ

¼ NoccðLbÞNoccðp� qÞ C1
ðS1p�q;Lb

Þ2
Rp�q;Lb

þ C2
ðS2p�q;Lb

Þ2

ðRp�q;LbÞ2
" #

(12)

with

Sip�q;Lb
¼ SipLb þ SiqLb (13)

The different notations used here are equivalent to those

used for bond–bond repulsion [eq. (8)], Rp�q,Lb
is the distance

between the midpoint of p–q bond and the centroı̈d of the

lone pair Lb. The occupation number Nocc of a lone pair is set

to 2.0 for a sp3-, sp2-, or sp-hybrid lone pair and to 1.0 ou 0.5

for each lobe of a pure p lone pair.

The standard hybrid form for the orbitals is now used to

estimate the considered overlap integral. The atomic orbital

can be assumed to be predominantly spherical and then of

s-type and directionality. A lone pair Lb of an atom b can be

expressed as a sum of s- and p-type orbitals:

Lb ¼ Cs � 2sb þ Cp � 2pb (14)

To further simplify this equation let us assume that the 2p

orbital can be divided into a r part along the direction q–b

and a p part perpendicular to it:

Lb ¼ Cs � 2sb þ Cp � ½2prb cosxcqbLb þ 2ppb sin xcqbLb � (15)

where xcqbLb is the angle between the direction of the lone

pair Lb and the direction p–q (the direction of the lone pair Lb
is the direction b–l where l is the centroı̈d of the lone pair see

Fig. 2).

We also propose that the atomic orbital, for example, on

the q atom, is mainly spherical meaning of s-type.

Assuming the previous approximation, the overlap integral

becomes:

hvqjvLbi ¼ Csbh2sqj2sbi þ Cpb cosxcqbLbh2sqj2prbi
þ Cpb sinxcqbLbh2sqj2ppbi (16)

The last integral is null for symmetry reasons. We further

use the relation:

h2sqj2prbi ¼ mqbh2sqj2sbi

The proportionality coefficient mqb is characteristic of the

pair of atoms involved (here q and b) and is tabulated in the

program. It is also important to note mqb = mbq if q and b

are atoms having different atomic numbers.

Equation (15) therefore simplifies as:

hvqjvLbi ¼ h2sqj2sbiðCsbþ Cpb �mqb cosxcqbLbÞ (17)

This results into the following equation for Sqb:

SiqLb ¼ Mqbe
�aiqqbðCsb þ Cpb �mqb cosxcqbLbÞ (18)

In eqs. (16) and (17), Csb and Cpb are standard hybridization

coefficients for the lone pairs (0.50 and 0.866 for sp3, 0.577

and 0.816 for sp2, and 0.0 and 1.0 for p).
For nonmetal atoms, the proportionality factors mqb were

originally programmed from formula given for the overlap

between Slater orbitals by Mulliken et al.[33] They were found

to have nearly constant values in a broad range of values

encompassing equilibrium distance.[30,34] Such values were

originally derived and reported by us in Ref. [30] and are tabu-

lated in the program.

The lone pair–lone pair repulsion is computed as previously

using overlap integrals, this time, between two nonspherical

orbitals localized on an atom a and an atom b:

repðLa; LbÞ ¼ NoccðLaÞNoccðLbÞ C1
ðS1La;Lb Þ

2

RLa;Lb
þ C2

ðS2La ;LbÞ
2

ðRLa ;LbÞ2

24 35 (19)

using the same notation as for eqs. (8) and (12). The same

approximation as for SpLb is used for SLa,Lb:

SiLa;Lb ¼ Mabe
�aiqabðCsaCsb þ CsaCpb �mpb cosxcabLb

þ CpaCsb �mab cosxcabLb þ CsaCpb �mba cosxcLaab
þ 2CpaCpb � cosxcabLb � cosxcLaabÞ (20)

It is important to note that xcLaab is centered on atom a,

which is different of xcabLb centered on atom b.

Case of a metal cation The cation–bond repulsion between a

bond p–q and a metal cation (Cat) is computed using the

same equations as before:
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repðp� q; CatÞ ¼ Noccðp� qÞ C1
ðS1p�q;catÞ2
Rp�q;Cat

þ C2
ðS2p�q;CatÞ2
ðRp�q;CatÞ2

" #
(21)

with Sip�q;Cat ¼ SipCat þ SiqCat
Here, Rp-q,Cat is the distance between the bond centroı̈d

(midpoint) and the cation, C1 and C2 are the same constants

as previously defined, and Nocc(p-q) is the occupation number

of the bond p–q.

SipCat ¼ MpCate
�aiqpCat (22)

with

qpCat ¼
rpCat

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðUpUCatÞ

p and MpCat
2 ¼ KpCat

mp
1� Qp

Nval
p

 !
(23)

and

repðLa; CatÞ ¼ NoccðLaÞ C1
ðS1La ;CatÞ2
RLa ;Cat

þ C2
ðS2La;CatÞ2
ðRLa;CatÞ2

" #
(24)

where Nval
p is the number of valence electrons of atom p and

mp is the total number of bonds and lone pairs originating

from p.

For metal cations, the values of KpCat are fit so that Erep
matches the numerical values and distance variations of

Eexch in the monoligated complex of the cation with repre-

sentative ligands: water for O, imidazole for N, and metha-

nethiolate for S. This is the procedure that was followed in

refs. 35 and 36.

The different constants and variables defined here are the

same as for the bond–bond repulsion.

The cation–lone pair repulsion between a cation (Cat) and a

lone-pair La (of an atom a) is defined in the same way as previ-

ously expressed:

SiLa;Cat ¼ MaCate
�aiqaCat Csa þ Cpa �maCat cosxdCataLa� �

(25)

similarl to eq. (17):

The values found for the maCat concerning Zn(II) were 1.0

with C, N, and O and 1.87 with S.[35] We have retained these

values for the heavy and transition metal cations. Variations

should be absorbed, here again, by the calibration of the KaCat
values.

All the other constants are already defined in the previous

sections.

Inclusion of a three-body exchange-repulsion correction

within SIBFA

The present QC results indicate that for several cations a

three-body correction is needed to improve the representation

of Erep. Such a correction was introduced using expressions

present in the two-body exchange-repulsion.

The following equations are general to any molecule, but in

the present work, we limit our computations to the cation–

water interactions following our ab initio results.

Different expressions were tested to model the three-body

part (E
3�body
rep ). Only the most successful one is presented

below. It is derived from the two-body repulsion equation but,

instead of the S2/r term used for E
2�body
rep , uses a S3/r3/2 formu-

lation:

E3�body
rep ¼ k

X
i2A

X
j2B

X
k2C

Sijffiffiffiffi
rij

p � Sikffiffiffiffiffi
rik

p � Sjkffiffiffiffiffi
rjk

p
� �

(26)

where rij, rik, and rjk, are the distances between the cation i,

namely fragment A, and atoms j and k belonging to fragments

B and C, respectively; Sij, Sik, and Sjk have the expressions given

in the previous section. k is a scaling factor.

The three-body term is computed by using the S overlap

functional and the distances between centers and, therefore,

does not significantly increase the computational cost.

The two-body exchange-repulsion is computed using the

previously published parameters. To avoid a full refitting of

both two- and three-body contributions, we use a different a
parameter to compute the S cation–ligand overlap functionals

[see eqs. (21) and (24)]. The specific three-body a and k pa-

rameters are given in Table 5.

The three-body repulsion was tested for representative com-

plexes of Ca(II), Zn(II), and Hg(II). The coordinates of all the 18

complexes are given in Supporting Information S2. The con-

stant k appears to depend only on the nature of the cation

involved in the complex formed and not on the nature of the

different ligands. The following SIBFA energies were computed

on the ab initio-optimized complex described in the previous

part.

SIBFA Results

The preceding QC computations showed that in polyligated

complexes of metal cations, such as their hexahydrates, the

many-body repulsion could amount to up to 6 kcal/mol. This

could have a significant impact on handling large inorganic

and a fortiori bioinorganic complexes such as metalloproteins.

They also showed that accounting for the three-body repul-

sion enabled to recover virtually the entirety of Erep nonaddi-

tivity including the previously discussed basis set effects. We

now evaluate the extent to which its formulation in the con-

text of SIBFA [eq. (20)] could account for such a nonadditivity.

Parametrization. The validity of the three-body repulsion

expressed in eq. (20) was tested on three cations of particular

importance in inorganic and bioinorganic chemistry:

1. Zn2þ which in the series investigated is the cation giving

rise to the largest many-body component of the repulsion;

2. Ca2þ for which the many-body component of the repul-

sion has negative values;

3. Hg2þ, a heavy metal cation, involved in several toxicology

issues. It is presently investigated in the context of QC and of

the integrated GEM/SIBFA approach.

The parametrization of the SIBFA three-body repulsion was

performed on adjusting the constants a and k to fit its
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ab initio counterpart. The complexes used for the parametriza-

tion are: [Ca(H2O)2]
2þ; [Ca(H2O)6]

2þ in an octahedral arrange-

ment; the octahedral [Zn(H2O)6]
2þ complex; [Zn(H2O)5/1]

2þ and

[Zn(H2O)4/2]
2þ, which have a total of six water molecules, with

five and four, respectively, in the first hydration shell and one

and two second-shell; [Hg(H2O)2]
2þ and [Hg(H2O)6]

2þ in an

octahedral arrangement. The complexes used for the valida-

tion of the parameters are: [Ca(H2O)4]
2þ in a square planar (SP)

as well as in a tetrahedral (Td) arrangement; [Zn(H2O)6]
2þ - n

(0 = n = 4), derived from the octahedral [Zn(H2O)6]
2þ com-

plexes upon progressive removal of n water molecules;

[Zn(CH3S)3]
�; [Zn(CH3S)4]

2�; [Zn(imidazole)3]
2þ; and

[Hg(H2O)4]
2þ in a SP form and in a Td geometry. The coordi-

nate of the different complexes are given in Supporting Infor-

mation S2. It is noteworthy that the parameters derived for

the complexes with the water ligand oxygens enable to pro-

vide a close match of Erep to Eexch-rep in the case of the imidaz-

ole N ligand and methanethiolate S ligand.

The present SIBFA implementation uses multipoles and

polarizabilities derived from the SBK basis set. The intermolec-

ular QC computations were accordingly performed with this

basis set for consistency. The sole exception concerns Ca2þ for

which the 6-31þþG** basis set was used because the large

core SBK pseudo-potential does not leave out any valence

electrons for it.

The compared QC and SIBFA values of the three-body Erep
component are reported in Table 4. The parameters optimized

for each cation are reported in Table 5. For 16 of the 18 inves-

tigated complexes, the SIBFA values differ by less than

1 kcal/mol from the QC ones and have generally smaller

magnitudes.

Relative stabilities of the Td and SP structures of mercury tetra-

hydrate [Hg(H2O)4]
2þ. Two main competing structures can be

adopted by the tetrahydrate complexes of metal cations, SP,

and Td (see Fig. 3). Their binding energies are compared in

the case of Hg2þ in Table 6. The ab initio results favor the Td

structure by about 9 kcal/mol out of 200. This preference

stems from the summed first-order (E1) contributions. Thus, E1
favors this structure by 21.5 kcal/mol, whereas E2 favors the SP

form by a lesser amount, namely 12.4 kcal/mol. The E1 prefer-

ence stems from a significantly smaller (54 kcal/mol) Eexch
value in the Td structure. Table 5 shows that the SIBFA contri-

butions can match closely their ab initio counterparts, except

for the Erep contribution in the SP structure, which is 5.4 kcal/

mol smaller than Eexch-rep. The larger short-range repulsions in

SP than in Td structures are due to the greater proximities of

the ligands in the former, particularly for the pairs of ligands

coming at right angles to one another. This could imply that

for these, OwAHgAOw three-body effects would have a more

destabilizing effect than in the Td structure. This is indeed

confirmed by consideration of the DEthree-body term. Thus, both

QC and SIBFA results yield values of 4.8 kcal/mol in the SP

structure as contrasted to 1.6–1.7 kcal/mol in the Td one.

Table 5. Values of the parameters a and k for the different cations.

Cation a k

Ca2þ 2.00 �35

Zn2þ 2.13 300

Hg2þ 2.13 470

Table 4. Values of the QC and SIBFA three-body components of Erep in

polycoordinated complexes of Zinc, Mercury, and Calcium.

Complex Ab initio SIBFA

Calcium [Ca(H2O)6]
2þ[a] �1.17 �1.01

[Ca(H2O)4]
2þ SP �0.40 �0.44

[Ca(H2O)4]
2þ Td �0.46 �0.46

[Ca(H2O)2]
2þ [a] 0.12 �0.02

Zinc [Zn(H2O)6]
2þ [a] 6.93 6.40

[Zn(H2O)6]
2þ - 1 4.91 4.27

[Zn(H2O)6]
2þ - 2 2.94 2.22

[Zn(H2O)6]
2þ - 3 1.41 1.08

[Zn(H2O)6]
2þ - 4 0.77 0.59

[Zn(H2O)5/1]
2þ [a] 4.38 4.74

[Zn(H2O)4/2]
2þ [a] 1.35 3.10

[Zn(CH3S)3]
� 2.47 2.27

[Zn(CH3S)4]
2� 4.60 2.47

[Zn(imidazole)3]
2þ 1.53 1.66

Mercury [Hg(H2O)6]
2þ [a] 4.09 5.04

[Hg(H2O)4]
2þ SP 4.83 4.77

[Hg(H2O)4]
2þ Td 1.71 1.56

[Hg(H2O)2]
2þ [a] 1.01 0.27

[a] The complexes used for parametrization

Table 6. Values of the QC and SIBFA binding energies in the tetrahedral

and square planar arrangements of the [Hg(H2O)4 ]
21 complex.

[Hg(H2O)4]
2þ

Tetrahedral Square planar

Ab initio SIBFA Ab initio SIBFA

Erep 78.0 81.8 132.3 126.9

Ec �194.2 �196.0 �226.9 �226.6

E1 �116.1 �114.3 �94.6 �99.7

E2 �89.3 �86.8 �101.7 �102.8

DE �205.5 �201.1 �196.3 �202.5

DEthree-body 1.7 1.6 4.8 4.8

Erep modified 78.0 83.3 132.3 131.7

DEmodified �205.5 �199.6 �196.3 �197.7

Figure 3. Representation of the [Hg(H2O)4]
2þ in the square planar (a) and

tetrahedral (b) forms computed at the B3LYP/SDD/6-31þþG** level.
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Addition of such a term to DE(SIBFA) appears to restore the

correct Td over SP preference.

Conclusions

EDA analyses have quantified the extent of many-body nonad-

ditivity of Eexch in polycoordinated complexes of a series of al-

kali, alkaline-earth, transition, and heavy metal cations. The

magnitude of the many-body repulsion was shown to be

strongly cation-dependent and other than three-body effects

were found to be negligible. This was exemplified in the series

of hexahydrate complexes. Thus, it could be either significant,

as in the case of Zn2þ (6 kcal/mol out of 108) or close to 0

kcal/mol as in the case of Naþ, Kþ, or Rbþ. The size of the ba-

sis set did not appear to be very important but the utilization

and nature of the pseudo-potential on metal cations could

change by up to 2 kcal/mol the nonadditivity of Eexch-rep. In

addition, the inherent error due to the choice of the monomer

basis set within the RVS EDA computation was discussed. It

was also shown that higher than three-body terms could be

neglected as they never change the repulsion energy by more

than 0.2%.

We have accordingly implemented a three-body repulsion in

the SIBFA potential and tested it on several complexes of

Ca2þ, Zn2þ, and Hg2þ. Such a term is computed using already

present two-body terms and therefore does not increase the

computational cost.

In 17 of the 19 complexes investigated, DEthree-body(SIBFA)
was found to differ from DEthree-body(QC) by less than 1 kcal/

mol. Accounting for this contribution could be important on

comparing the relative stabilities of the competing arrange-

ments of the polycoordinated complexes of a metal cations.

This was shown in the present study concerning the Td versus

SP arrangements of [Hg(H2O)4]
2þ. The SIBFA three-body correc-

tion reproduced very closely its ab initio counterpart in both

arrangements. Its inclusion in the total SIBFA interaction

energy enabled to restore the Td versus SP preference consist-

ent with the QC computations. Future works will deal with (1)

the inclusion of correlation effects with our many-body formal-

ism through density functional theory[26,37] or post-HF meth-

ods[7]; (2) alternative formulations based on density

overlap.[1,15]
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