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Abstract: As for generating localized Hartree—Fock orbitals, we propose a potentially linear-
scaling singles-Cl scheme to construct fragment-localized density functional theory (DFT) orbitals
for molecular systems as water clusters. Due to the use of a deformation step instead of a
localization step, the influence of the environment on each separate molecule can be studied in
detail. The generated orbital set for the whole molecular system is strictly equivalent to a set of
canonical orbitals and is a subsequent energy decomposition of intermolecular interactions into
electrostatic, exchange repulsion, and orbital interaction, well beyond dimer systems. Beyond
this, the correspondence of the individual orbitals to the initial monomer orbitals permits to assess
how an interaction deforms an electron density. We show this for dipole moments, which may
be decomposed into monomer contributions, polarization, and charge-transfer contribution.
Applications to a water and an ammonia dimer and chains of water molecules show possible
further developments toward multipolar expansions and other orbital-based schemes for

parametrizing force fields.

1. Introduction

Density functional theory (DFT) is now a widely used tool
for calculating molecular properties due to a favorable scaling
with system size, permitting calculations at high precision
even for medium-sized molecules, inaccessible to perturba-
tion- or configuration-interaction (CI) based quantum chemi-
cal methods.

Another advantage of DFT lies in the fact that a single
Hartree product or Slater determinant with Kohn—Sham
orbitals is usually employed for describing the wave function
and not a long expansion in reference and excited determi-
nants. The connection between the density and orbitals is
therefore straightforward as in Hartree—Fock, nevertheless
including correlation through the functional.

¥ Article honoring the work of Jean-Pierre Daudey (Toulouse,
France).
* E-mail: Peter.Reinhardt@upmc.fr.

This Kohn—Sham wave function—the orbitals generating
the density, assembled in a Hartree product or in a Slater
determinant—is invariant under unitary transformations of
the occupied orbitals. This property, although used, may
deserve more attention for molecular systems, as it is a
recurrent topic in modern wave function-based quantum
chemistry, notably in the quest for linear-scaling algorithms.’

Orbital localization has a longstanding tradition in quantum
chemistry (see ref 2 and references therein) and is associated
with the names of Boys,’ Edmiston-Ruedenberg,* Pipek—
Mezey,5 or even the natural bond orbital (NBO) analysis of
Weinhold et al.” The Boys localization is known in the
physicists community as Marzari—Vanderbilt® scheme. These
methods optimize a localization criterion minimizing bielec-
tronic repulsion (Boys) or the fragmentation of the orbitals
on atomic centers (Pipek—Mezey). Commonly the starting
point for these localization methods is a set of completely
delocalized canonical orbitals, diagonalizing the Fock or
Kohn—Sham matrix. The use of delocalized orbitals as
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starting point becomes rapidly a handicap for larger systems,
motivating the development of intrinsic localization proce-
dures without the necessity to generate completely delocal-
ized orbitals.

Recently, several approaches have been proposed in order
to use localization criteria to unravel the origin of intermo-
lecular interactions in weakly interacting molecular systems.
For example, Rob et al.” presented a approach based on
Boys’ localization for the computation of intermolecular
electrostatic energies including correlation showing promis-
ing results which could be competitive with density fitting
approaches'®!" as cutoff approximations lead to errors below
0.5 kcal/mol per dimer interaction. At the same time, a full
energy decomposition analysis (EDA) was achieved by
Khaliullin et al.'*'? using “absolutely localized orbitals”
demonstrating the advantage of the localization process for
computations on large systems. Such results are important
as EDA are essential to the development and the calibration
of advanced force fields.'"'*

For constructing intrinsically localized DFT molecular
orbitals, we take up an old idea," further developed and
published by Daudey'® and still cited recently,'”-'® without
the need to have delocalized canonical orbitals. The central
point is that in Hartree—Fock theory a CI of singly excited
Slater determinants lowers the total energy toward a set of
Hartree—Fock orbitals, reaching convergence when satisfying
Brillouin’s theorem: interactions between occupied and
virtual orbitals via the Fock matrix vanish. The singles-CI
matrix is locally concentrated, as excitations on fragments
with large spatial separation are much less important than
those within close neighborhood. That permits the local
correction of the monomer orbitals, disregarding the actual
extent of the complete system. No canonical (completely
delocalized) molecular orbitals are created or needed.

The method becomes operational and potentially linear
scaling when taking for the elements of the configuration
interaction matrix between singly excited determinants only
the part generated from Fock matrix elements as

(DHID]) = F,,0,— F;0 )

ij~ ab

Otherwise a partial four-index transformation would be
necessary for each SCF iteration."?

The use of density-functional theory for intermolecular
interactions may seem inappropriate, as the important disper-
sion part is not correctly treated in actual Kohn—Sham
formalism. However, improvements are under way,zo and
the scheme we like to present here will be directly applicable
to these improved functionals as well. On the other hand,
we may cite several successful DFT applications for hydrogen-
bonded systems,?' despite this inherent default.

We should stress again that the application of the present
orbital localization scheme does not help to overcome basic
defaults of current density functional theory by inclusion of
missing parts of the correlation energy. Even though we
employ a Cl-based optimization scheme, nothing is for the
moment included to go beyond a common Kohn—Sham
energy, obtainable via standard procedures. Nevertheless, the
generated local orbitals and moments developed here may
be helpful in a subsequent step to develop a proper dispersion

J. Chem. Theory Comput., Vol. 4, No. 12, 2008 2021

scheme like in the recent DFT based SAPT (symmetry
adapted perturbation theory), where the Kohn—Sham mono-
mer orbitals act as starting point for a perturbative intermo-
lecular scheme.***

In the SCF MI approach (SCF for molecular interaction)
of Khaliullin et al.,'>'? a similar scheme for orbital optimiza-
tion is presented, replacing the iterative singles-CI step by
one single calculation of fourth-order perturbation theory in
monomer orbitals without explicit orthogonalization of the
complete orbital set.

For the sake of completeness, we may cite the work of
Adams and Gilbert with a similar objective,>*** constructing
local fragment orbitals in the sense of building blocks for a
molecule or solid, further developed by Kunz?® and Seijo
and Bandiaran.”’

The paper is further organized as follows: in the first part,
we recall the iteration scheme based of the CI step and our
particular use for treating weakly interacting multimonomer
or segmented systems. We show how the procedure allows
the decomposition of any monoelectronic property into well-
defined monomer contributions and how the scheme fits into
common energy decomposition schemes like those of Ziegler
and Rauk,?® Bickelhaupt and Baerends,?® or the constrained
space orbital variations approach (CSOV) of Bagus et al.*

In the second part, results are shown for the dipole moments
(local and global) of an ammonia dimer, the energy decomposi-
tion for a linear water dimer,*'*> and an orbital analysis and
an energy decomposition for small, helixlike water clusters
(denoted longitudinal hydrogen-bonded chains (I-HBCs), see
ref 33 and the Appendix) in order to identify the convergence
and transferability of the orbital decomposition.

In the Appendix, we collect all technical details and the
formal proof of the equivalence of the singles-CI scheme
for obtaining Hartree—Fock or Kohn—Sham orbitals.

2. Methodological Details

We consider a system which may be decomposed intuitively
into well-separated fragments. For each fragment, we
construct canonical orbitals separately, in a set of atomic
orbitals attached only to the particular fragment. From this
calculation, we keep the virtual orbitals for spanning the
virtual orbital space of the complete system. To obtain
reasonable occupied orbitals of the monomers, we perform
in a next step a calculation of canonical orbitals of the
individual monomers in the atomic-orbital basis of the
complete system. The advantage of such a procedure lies in
the fact that the necessary integrals over atomic orbitals have
to be calculated only once, and all iterations can be performed
with the same set of integrals. At the end of the double series
of monomer calculations, the orbitals are assembled to a
starting set of occupied orbitals and orthogonalized employ-
ing Lowdin’s S™"* orthogonalization.* This “democratic”
orthogonalization insures that on average every orbital is
corrected in a least-most perturbation, preserving as most
as possible the characteristics of the monomer orbitals.*> To
this set of occupied starting orbitals, the previously generated
set of virtual orbitals is orthogonalized through projection,
and at last, the virtual orbitals are orthogonalized among
themselves, again via Lowdin’s procedure.
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2.1. SCF Iterations through a Singles-CI. Now every-
thing is set up for starting the SCF procedure toward the
HF or DFT wave function of the whole system. A first
determinant @, is constructed from the occupied starting
orbitals, and the energy is lowered by variational inclusion
of monoexcited determinants P

W=d)+ ) D )
from which we take the coefficients to correct in first-order
the occupied and virtual orbitals ¢,(7) and ¢,(7), respec-
tively, through

¢/ (F)=¢F)+ Y cl¢,(7)
0,/ (F)=0,(F)+ ) ci(7) 3)

The correction of the virtual orbitals ensures that the occupied
and virtual space remain well orthogonal with respect to each
other. However, orthogonality within each of the two spaces
is only ensured to first order, and the orbitals are orthogo-
nalized again using Lowdin’s procedure. With the orthogonal
orbitals at hand, we construct again the singles-CI matrix,
look for its lowest eigenvalue and corresponding eigenvector,
and correct the orbitals, etc. The loop is controlled either by
the changing of the total energy or by the smallness of the
mean Fock (or Kohn—Sham) matrix element F;,, coupling
occupied and virtual orbitals. If one insists (and making
useless the effort of preserving locality), the generated
(localized) orbital set can be transformed directly to a
canonical one by a single diagonalization of the Fock (or
the Kohn—Sham matrix in the present case). The final
determinant (Hartree—Fock or Kohn—Sham) is indeed the
lowest in energy as the energy evaluation is independent of
the CI procedure, using in the Hartree—Fock case the
Rayleigh quotient (@oIHI®y)/{PolDy) or, respectively, in the
Kohn—Sham case, the corresponding energy functional E[p]
with a particular exchange-correlation part Exc[p].

The cost of this CI procedure is equivalent to a straight-
forward iteration using a diagonalization of the Fock (or
Kohn—Sham) matrix due to the use of an approximate CI
matrix (eq 1) without an explicit four-index transformation
of the bielectronic integrals at each iteration.

Linear scaling may be achieved because the orbital
corrections due to the orthogonalization procedure and the
Fock matrix elements are strongly localized in real space in
the beginning and remain localized as unnecessary delocal-
izations due to any diagonalization are avoided.

As for all CI schemes, the question of size-consistency
may be posed. Algorithms for the correction are well-known
(Davidson correction, CEPA-like treatments,>® etc.) but seem
not to be of crucial importance in the present, medium-sized
cases.”” The final orbitals are the same, and only small
improvements of convergence were observed.

2.2. Use of the Orbital Deformations for Analyzing
the Wave Functions. As we have at the end orbitals
associated to the monomer orbitals, we may try to expand
an according density for example in multipolar moments or
consider just the deformation in a linear decomposition of
the form
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¢(F)= M) + ¢S (F) + 60(F) (4)

CEINY3

where the subscripts stand for “monomer”, “same monomer”
and “other monomers” to describe the effect of on-site
polarization and of charge transfer. The monomer part is the
projection of ¢«{7) on the corresponding, unperturbed
monomer orbital ¢{(7), the second part is the expansion of
the remainder on the basis functions on the same monomer,
and the third one the expansion on the basis functions located
elsewhere.

The three parts are not orthogonal but give rise to six
different density matrices

PMM,i+PMS,i+PMO,i+PSS,i+PSO,i+POO,i (5)
the sum of which is the partial density matrix created by the
molecular orbital ¢ 7).

P'= I6:) (¢ ©)

In the spirit of a Mulliken analysis, we may attribute
densities between different parts in halves to the proper parts
MM, SS, and OO as The analysis may be done for each

po— PMM,i+%<PMS,i+PMO,i) +Pss,i+%(PMs,i+Pso,i) .

monomer

polarization
+ PO 4 % (PMO*" +PSO”') (M

charge transfer

orbital separately, showing thus more or less deformed
orbitals of the cluster with respect to the individual mono-
mers. Of course, this detailed decomposition depends on the
form of the monomer orbitals and of that of the orbitals of
the whole system. Nevertheless, the choice of canonical
monomer orbitals and CI-generated multimer orbitals reduces
this general ambiguity toward reproducible quantities.

+ P

Pl = Pi\/lono Polarization + PICT (8)
The sum of all of these partial density matrices gives the

density matrix of the whole system.
Psystem — Z Pi (9)

On the other hand, summing these orbital-specific density
matrices over the occupied orbitals of each monomer
separately,

Pre= )" p (10)
iefrag
we may decompose any monoelectronic operator into mono,
polarization, and charge-transfer parts attributed to the
individual monomers. We show this for the Mulliken
populations and dipole moments in the next section. For
instance with the dipole operator x4, we have

—frag __ pfrag— __  pfrag frag frag\—
u =P u= (PMono + PPolarization + PCT )/’t
__ —frag —frag —frag
= Unono + HUpolarization + Ucr (1 1 )

Of course we have to remind that this decomposition is
not unique, as it is based on orbitals. Nevertheless, starting
from canonical monomer orbitals and employing the de-
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scribed singles-CI procedure gives a recipe to construct
decompositions with a well-defined procedure. Our dipole
moments sum up to the global dipole moment of the whole
system under study, and following them individually when
assembling a system may help to identify characteristic
regions of the fragments.

The same principle may serve for total energy decomposi-
tions, the (Kohn—Sham) kinetic energy and the electron—nuclear
attraction also being monoelectronic properties. However,
the bielectronic terms (electron—electron Coulomb repulsion
and Hartree—Fock exchange as for the B3LYP functional)
become very numerous, and the attribution of their cross-
terms to individual monomers seems less reasonable than
for the monoelectronic quantities. Therefore, we follow for
the moment another proposition, as detailed below.

2.3. Intermolecular Energy Analysis. Intermolecular
energy decompositions are often in the center of interest for
singling out active sites of fragments and preponderant,
chemically intuitive contributions to the overall stability of
an assembly. One of the first attempts with great success
was Morokuma’s analysis of a Hartree—Fock interaction
energy,”®® using parts of the Fock matrix in the self-
consistent scheme in order to extract electrostatic, polariza-
tion, charge-transfer, and a sum of remaining terms. Instead
of performing several independent calculations for obtaining
the different contributions, we have all at hand for construct-
ing the interaction energy step by step from the unrelaxed
monomer orbitals (electrostatic interactions), the orthogo-
nalized monomer orbitals (Pauli repulsion), and orbital
interaction as relaxation of the orbitals from the starting
orbitals of the singles CI step to the Kohn—Sham orbitals
of the whole system. This scheme, initially proposed by
Ziegler and Rauk,?® has been popularized by Bickelhaupt
and Baerends® and served recently for a comparison with
the ab initio SAPT scheme.?” The CSOV decomposition
scheme, in its spirit closer to Morokuma’s original scheme
as subsequently more and more orbitals are allowed to relax
in harmony, gives as well results close to those of the
Bickelhaupt and Baerends decomposition.*!

As these energy decompositions are completely invariant
under orbital localization, we should obtain exactly the same
results as for canonical orbitals, unless employing ap-
proximations within the orbital space as cutoffs or selection
schemes. The advantage of the use of (fragment-)localized
orbitals instead of canonical ones lies in the fact that
approximations become distance dependent and can be
chosen prior to a calculation (to be carried out more
efficiently) without loosing the necessary precision.

Beyond a common decomposition of one single dimer
interaction (like in SAPT or CSOV), we may decompose
the n-fragment interactions in larger clusters without any
additional effort. Such multifragment decompositions at the
DFT level have only to be carried out at the moment by
Khaliullin and Head-Gordon'*'? and should be useful for
obtaining reference data for force fields.
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Figure 1. Water molecules in a helixlike linear structure.
Pieces of one to five molecules from the left end of the chain
have been considered in the present work.

3. Applications

The present approach has been applied to an ammonia dimer
and a series of small water clusters. All technical details may
be found in the Appendix.

The water cluster are parts of a helixlike arrangement (as
depicted in Figure 1) of which we took pieces with two to
five molecules.

3.1. Uniqueness of the Orbitals. The spread of the
aforementioned decomposition (eq 7) gives us the possibility
to measure the uniqueness of the generated orbitals for
different conditions of their calculation. One can invoke the
arbitrariness of the final orbitals to discredit the proposed
generation scheme via the singles-CI step, as the final orbitals
depend on the initial set of guess orbitals. Using canonical
monomer orbitals as guess, this arbitrariness is already
removed.

Here, we show that even different ways to achieve
convergence, both through a constant Fock-matrix (or
Kohn—Sham-matrix) mixing between the SCF cycles and a
fixed scaling of the Cl-vector, results only in minor differ-
ences for the resulting orbitals. For a system of three water
molecules, we tested this dependence and did not find any
significant changes in the occupations of the monomer, same-
monomer, and other-monomer part of the individual orbitals.
The variation (see Table 1) appears to be in the order of 10
u-electrons both for the Cl-coefficient scaling and the
F-matrix mixing. For calculating the variation, we determine
first the average population of each occupied orbital, and
evaluate the sum of the quadratic deviations from these
averages in each calculation. As the calculations converge
in quite different numbers of iterations (see Table 1), this
should be considered as reasonably stable.

3.2. Shape of the Orbitals. For the functionals LDA,*
PW91,** BLYP,** and B3LYP* (and Hartree—Fock), we
ran the series from two to five water molecules.

We may look (in Table 2) at the most diffuse (and
overlapping) orbital at one extremity of our small water
chains (the left one in Figure 1). From the five occupied
orbitals of the first molecule in our series, this is the highest
in orbital energy.

We recognize that in the Hartree—Fock case, the orbitals
are slightly less deformed than DFT orbitals and that the
different contributions seem stable for the 5-membered chain.
The former parallels the usual observation that Hartree—Fock
polarizabilities are smaller than DFT polarizabilities.*'

Note that these orbitals are not Boys or Pipek—Mezey
localized orbitals, producing lone-pairs or bond orbitals for
instance. The spatial localization appears through the small-



2024 J. Chem. Theory Comput., Vol. 4, No. 12, 2008

Reinhardt et al.

Table 1. Convergence Acceleration through Cl-Vector Scaling or Fock-Matrix Mixing between lterations, for three Water

Molecules in a standard Van Duijneveldt Basis?®

mixing/scaling 15% 20%
no. iterations 42 29
o (monomer population)/10~° 1.8 1.8
o (same orb pop)/10~° 1.6 1.5
o (other orb pop)/10~° 0.9 0.8
mixing/scaling 75% 80%
no. iterations 40 28
o (monomer population)/10~° 2.4 2.2
o (same orb pop)/10~° 2.1 1.9
o (other orb pop)/10~° 1.2 1.0

Cl-Vector Scaling

25% 30% 35% 40%

25 20 15 23

1.7 1.7 1.6 1.6

1.5 1.5 1.4 1.4

0.8 0.8 0.7 0.7
Fock-Matrix Mixing

85% 90% 95%

35 52 94

2.0 1.9 1.7

1.8 1.6 1.6

0.9 0.8 0.7

@ Qutside the given range, the calculations did not converge. The next lines give the mean standard deviations of the populations from
the average values of the 15 occupied orbitals in the three-molecule cluster. The data is for the BLYP functional.

Table 2. Decomposition of the Most Diffuse Occupied
Orbital of One of the Two Extremities of the Water Chains
into the Different Populations?®

(H20)2 (H20)3 (H20)4 (H20)s
monomer orbital
HF 0.9964 0.9962 0.9961 0.9961
LDA 0.9949 0.9945 0.9944 0.9943
PW91 0.9949 0.9946 0.9944 0.9944
BLYP 0.9950 0.9946 0.9945 0.9944
B3LYP 0.9944 0.9941 0.9940 0.9939
same fragment
HF —0.0002 —0.0006 —0.0011 —0.0012
LDA —0.0092 —0.0093 —0.0099 —0.0100
PW91 —0.0067 —0.0062 —0.0067 —0.0067
BLYP —0.0050 —0.0044 —0.0047 —0.0048
B3LYP —0.0173 —0.0166 —0.0169 —0.0170
other fragments
HF 0.0038 0.0045 0.0050 0.0052
LDA 0.0143 0.0148 0.0155 0.0157
PW91 0.0117 0.0117 0.0122 0.0124
BLYP 0.0100 0.0098 0.0102 0.0104
B3LYP 0.0229 0.0225 0.0229 0.0231

Z Note that we treat Hartree—Fock on the same footing as the
density-functional results.

ness of the contributions S and O of eq 7. Small differences
are observed between different functionals, reflecting the
different importance of self-interaction in the functionals.
This leads commonly to the slightly different literature values
of, for instance, charge transfer terms*' which we may
identify as the other-fragment parts in our decomposition.
In the case studied, we see that the B3LYP orbital does not
present values intermediate between Hartree—Fock and pure
exchange-correlation functionals without an explicit exchange
term. Already for interaction energies of the three-molecule
system B3LYP (1.15 kcal/mol) is lower than BLYP (2.86
kcal/mol) and Hartree—Fock (6.12 kcal/mol).

Differently than for the atoms-in-molecules (AIM) ap-
proach,*® where atomic basins and their populations are
studied, we may look at the density attributable to each
molecule through the molecular orbitals. This decomposition
scheme, based on orbitals rather than on the density, is
extensively studied for instance by Fernandez Rico et al.*”*®

3.3. Local Properties As Dipole Moments. Apart from
the question of linear scaling methods, we may employ the
so-constructed orbitals for studying weakly interacting
complexes by extracting monomer properties and interaction-

M

Figure 2. Schematic drawing of the deformation of the
molecular dipoles via the interaction of two NH3; molecules.
M indicates the monomer dipoles, and D, the dimer dipoles.

induced changes of these. As an example, we may look at
the dipole moment of two interacting NH3; molecules, for
which we calculate the influence of the interaction of the
size and the direction of the local dipole moments. The global
dipole is a well-known quantity, and its measurement leads
to an identification of the complex,**>® invalidating the
common picture of a purely hydrogen-bonded system, with
one of the hydrogen atoms lying in the N—N connection
line. Nevertheless, we use that geometry for the present case,
as we are not aiming at a complete study of this dimer
system.

For each molecule, we may calculate a dipole moment
within the full dimer basis separately and look for the
deformation of the monomer-attributed orbitals when con-
structing the localized dimer orbitals via the described
singles-CI procedure. We have a good trace for the deforma-
tion, as the iterations only deform in a minimal sense the
starting guess orbitals. Figure 2 shows schematically the
reorientation of the two moments toward an alignment. This
is expected from basic physics for lowering the total energy
in a dipole—dipole interaction. However, the contribution
of these calculated dipoles to the interaction energy is rather
small, being in the order of microhartrees (Table 3).

The global moment is varying from about 2 D to about 3
D, much too large compared to the experimental estimate
of 0.75 D.*

3.4. Intermolecular Interactions. Energy decomposition
schemes®*>! furnish two first-order terms, an electrostatic
interaction of the monomers E. (or E&,?O) in SAPT) and an
exchange-repulsion term Ecycn—rep (or Pauli repulsion), the
sum of which is called frozen-core contribution Erc in the
CSOV scheme of Bagus and Illas.*'" This Egc is equivalent
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Table 3. Deformation of the Dipoles of the Individual,
Separated Monomers (dipole (M)) toward the Attributed
Dipole in the Interacting System (dipole (D)), Calculated
with Different Functionals?®

NH3z—NH3 dipole (M) dipole (D) difference angle
HF 1.56 1.81 0.25 15.3
1.56 1.75 0.19 0.1
total dipole (M)  total dipole (D)  angle (M)  angle (D)
2.42 3.05 77.8 62.4
LDA 1.45 1.66 0.20 135
1.44 1.8 0.44 1.2
total dipole (M)  total dipole (D)  angle (M)  angle (D)
2.25 3.02 77.8 63.0
PW91 1.42 1.62 0.20 14.8
1.39 1.77 0.39 1.2
total dipole (M)  total dipole (D) angle (M) angle (D)
2.19 2.92 77.8 61.8
BLYP 1.40 1.62 0.211596 15.5
1.36 1.72 0.361039 1.2
total dipole (M)  total dipole (D)  angle (M)  angle (D)
2.16 2.88 77.3 60.7
B3LYP 1.46 1.68 0.22 15.0
1.43 1.75 0.32 0.8
total dipole (M)  total dipole (D)  angle (M)  angle (D)
2.25 2.95 77.5 61.7

2 The phrase “total dipole” stands for the vector sum of the two
individual dipoles, forming the indicated angle. Units are Debye for
the dipole moments, and we give differences in length and
orientation. The differences for the two monomer dipoles (M)
within a calculation has to be ascribed to a non-negligible BSSE,
as the basis sets were elaborated for Hartree—Fock orbitals.

to the Heitler—London energy, employing the unperturbed
monomers orbitals, and corresponds to the antisymmetrized
Hartree product of the isolated monomer wave functions.
Orbital relaxation toward the multimer orbitals yields the
second-order term called orbital interaction,?%*° correspond-
ing to the sum of polarization and charge transfer in CSOV
(named induction in the force-field terminology>?). In that,
scheme relaxation implying virtual orbitals is allowed in this
step, in contrast to the first-order, where no mixing between
occupied and virtual orbitals is permitted. The subtle
question, at which instance a correction for a basis-set
superposition error (BSSE) has to be included, is circum-
vented in our scheme as we calculate monomers in the
monomer atomic basis and as well in the multimer atomic
basis, and both can be compared to the final HF or DFT
solution. Thus, results can be correlated to schemes respect-
ing the BSSE in the very last step like CSOV or to schemes
calculating intermolecular interactions in the full multimo-
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lecular basis sets throughout like SAPT. The EDA ap-
proaches decompose the total interaction energy AFE as

AE=E,+E

exch—rep

+ EOI + EBSSE = EFC + EOI + EBSSE
12)

with the terms defined above.

CSOV (using canonical orbitals) was used to provide
accurate data for the development of a new generation of
force fields based on the electron density.'* The present
approach in fragment-localized molecular orbitals permits
to find corresponding terms, which will be detailed in a
forthcoming paper. Here, we limit ourselves to the global
terms discussed above (details about equivalence of terms
can be found in refs 40 and 41).

We tested the accuracy of our approach on a previously
investigated linear water dimer configuration.'*?'3% As
expected, we observe the invariance to orbitals localization
of our decompositions scheme: localized and canonical
orbitals lead to rigorously the same energy contributions,
which is not the case for all decomposition schemes (due to
projections or approximative orbital rotations).

Table 4 displays the comparison between our approach
(fragment-localized orbitals) and CSOV (canonical orbitals)
for different functionals, including Hartree—Fock. Differ-
ences between the two approaches appear to be around 0.1
kcal/mol and are due to a slightly smaller variational space,
6d or 5d orbitals in the AO basis, and different integration
grids The already observed (refs 41 and 52) DFT exchange-
repulsion-functional-specific behavior is observed. For ex-
ample, PW91 exhibits a less repulsive value of the exchange-
repulsion contribution compared to HF.

Table 4 shows as well the importance of taking into
account the full dimer basis. Indeed the addition of the second
monomer basis functions clearly affects the energy compo-
nents by augmenting both the value of electrostatic and the
exchange-repulsion energy. This “BSSE-like” effect is then
clearly pronounced for frozen core (or first order in the SAPT
terminology). Such a behavior, already observed (see refs
32 and 53) in the framework of SAPT should be carefully
taken into account when developing force fields with a
precision within this order of magnitude.

The decompositions may be easily extended beyond dimer
systems, allowing the calculation of many-body contributions
in contrast to SAPT or CSOV calculations, often restricted
to the implementation of 2-body terms.'* Another multi-
monomer scheme, the reduced variational space scheme’”
(similar to CSOV) was applied for Hartree—Fock wave
functions and may be extended easily to Kohn—Sham wave
functions as well.

As it can be seen, once again the specific behavior of each
functional for the exchange-repulsion component is con-
firmed: PW91 < B3LYP < HF < BLYP.

Table 5 gathers results only for the intermolecular
contributions on three and five water-molecule chains. Such
water chains were initially selected in order to enhance
cooperative effects as the molecular dipole moments are
parallel to the main axis of the helixlike chain.*?

Such chains also confirmed the presence of an enhanced
charge transfer at the DFT level since Eq is strongly
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Table 4. Energy Decomposition (kcal/mol) for the Linear Water Dimer?

functional Ees Eexch—rep Erc Eoi+sse total interaction
monomers in the respective monomer basis
HF (5D) —8.26 6.88 —1.38 —2.16 —3.55
HF (6D) —8.27 6.91 —-1.36 (— 1.37) —2.18 (— 2.19) —3.55
BLYP —8.00 7.42 —0.58 —3.28 —3.86
BLYP (6D) —8.03 7.48 —0.55 (— 0.61) —3.30 (— 3.26) —3.86
PW91 —7.91 6.22 —1.69 —3.30 —4.99
PW91 (6D) —7.93 6.27 —1.66 (— 1.50) —3.33 (— 3.48) —4.99
B3LYP —8.05 6.67 —1.38 —2.97 —4.35
B3LYP (6D) —8.07 6.71 —1.36 (— 1.45) —2.99 (— 2.95) —4.35 (4.40)
monomers in the dimer basis
HF (5D) —8.30 7.02 —1.28 —2.27 —3.55
HF (6D) —8.30 7.02 —1.28 —2.27 —3.55
BLYP —8.19 7.68 —0.51 —3.35 —3.86
PW91 —8.10 6.52 —1.58 —3.42 —4.99
B3LYP —8.18 6.87 —1.31 —3.04 —4.35

2 Geometry and basis set are from ref 59. Results from CSOV are given in parenthesis. The Hartree—Fock results are given for a 5D and
6D AO basis set as CSQV is done in the latter. In the DFT case, our scheme uses 5D throughout. The effect on the different terms is small.
For the second part taking 6D or 5D functions makes no difference for all functionals.

Table 5. Energy Decomposition Results (kcal/mol) for Three and Five Water Molecules in the Helix Structure?®

functional Ees Eexch—rep Eo BSSE total interaction
three water molecules HF —39.33 66.14 —-21.19 0.51 6.12

BLYP —40.85 69.51 —26.88 1.08 2.86

PW91 —40.03 64.49 —-27.15 1.07 —-1.62

B3LYP —40.24 65.82 —25.29 0.89 1.15

HF —80.88 132.08 —45.33 1.03 6.87
five water molecules BLYP —83.51 138.89 —57.16 2.19 0.41

PW91 —81.86 128.74 — 57.75 2.16 —-8.71

B3LYP —82.42 131.47 —53.86 1.74 -3.07

2 Note the strongly different results of the total interaction energy for the different functionals.

increased in agreement with previous studies.*' The (frag-
ment-)localized approach offers as well an energy decom-
position per orbital or molecule beyond the global terms.

4. Conclusion

We showed that the singles-CI scheme used for the construc-
tion of localized Hartree—Fock orbitals applies as well for
the construction of (fragment-)localized Kohn—Sham orbit-
als. Through the use of canonical monomer orbitals, the
localized orbitals of the whole, fragment-based system are
very well defined and reproducible, even if an explicit
localization criterion is absent in the procedure. Cutting the
orbitals in three parts permits to decompose monoelectronic
properties in a straightforward manner into monomer,
polarization, and charge-transfer parts. This decomposition
based on orbital contributions is, as any decomposition
scheme of global observables, somehow arbitrary.

For the moment, the implementation gives the exact equiva-
lence to canonical orbitals, but cutoffs, expansion of S~ into
a power series, and other selection criteria may be implemented
easily, leading to a potentially linear-scaling procedure.

We do not doubt that the monomer-attributed properties
(as dipole moments in the present case) will show useful
for interpretation and the construction of modern force fields.
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Appendix A: Technical Details

For the calculations, we use our series of experimental
programs,>> which are linked to DALTON,® for the genera-
tion of integrals, and to Molpro,’” for the evaluation of the
density functional terms. For the CSOV calculation we
employed an in-house implementation*' of the method in
HONDO 95.3.®

The basis set for the water molecules is a standard one of
van Duijneveldt,” designed explicitly for the computation
of intermolecular interactions in water aggregates.®® The
individual water molecules are in their ground-state geometry>'*
and are assembled in a helixlike linear arrangement.

For the ammonia molecules, an augmented v. Duijneveldt
basis and standard geometry are employed, in the same line
as for our previous studies (e.g., ref 40).
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Calculations were carried out on a Pentium IV-based
personal computer (local DFT) and on SP5 IBM processors
(CSOV).

Appendix B: Equivalence of HF and DFT
Singles-Cl Procedure

The fact that the construction of Hartree—Fock orbitals
through the singles-CI method is useful has been demon-
strated several times since its proposition, in particular for
periodic systems.'””®" The derivation of the singles-CI
equations through the minimization of the Rayleigh quotient
with respect to the expansion coefficients in the space of
determinant may be found in standard textbooks.®>

What remains in this section is to show that the minimization
of the DFT energy functional with respect to a multidetermi-
nantal wave function leads to similar expressions for the matrix
elements of the CI matrix. It is of little importance whether we
start with determinants or simple Hartree products of orbitals—the
resulting densities are the same. For the sake of similarity to
the derivation of the usual CI equations, we stick to determinants
and the common Slater rules.

Our ansatz for the wave function as linear combination
of singly excited determinants leads directly to a CI density
as function of three-dimensional coordinates

Y =copo T Z Cror (13)
I

P(7)=Nf-- 'fd3r1- By W F s
PF e Ty T) = P (7) +
chzpd)l(_f) +2NZ CICJ'/‘” .fd3rl e
! <
d3rN71(I);(71’ <o, _r.N71’ )=

co’Pa, () + Y 00 (FIH2Y, cedl(P)BlTF) (14)
1 <J

Ty, F)X

_’;Nfl’ 7)(1)1(71’ cce,

where k and [ are the number of the single orbital by which
the two determinants ®; and ®, differ (in the double sum 7
< J, we allow ®; = ®y). If there are more orbital differences,
no contribution to the density is obtained, as the density
operator is a monoelectronic operator. In a second quantiza-
tion, we may write the density associated with the two
determinants as

p,(7) = N (F)p(F NP Jaja)D )

as the (N—1)-particle determinants ¢|®,) and a;/®;) need to
be equal to yield an integral different from zero.

With this expression at hand, we may write up the variation
of the density-dependent exchange-correlation functional®*¢*
With the formal matrix element of the exchange-correlation
potential 2X(7) as a one-electron operator V*¢ = Z,%X(7)
acting on determinants, we have

J D F) Er=(@ VD) (15)

and

S CD(Fre)(7) dr= (D VD) (16)
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and thus using

JM =200 (F)+2) ;PP (17)

J=I
we obtain
SEXC[p] _ / SEXC[p]| dp(¥) Pr
8¢, ép | dg
WG
= 2¢;(®,|V¥C|Dy) +2 Y (®,[V¥C|®,) (18)
I£T

For the Coulomb matrix elements, the same construction
holds: again with a one-electron operator J. All terms of the

pE)p(®
E)lp] = 2// d o dr,

r1 —I'2| —
%:/ OF,[p] Mcﬁr
oc; % _I; %
H;—’
§E b r=jts) and -3, j(%)
OLIPL e, (0,10, +2 2. ¢ (@) "
Oc; £

DFT energy functional put together, we arrive at the same
CI equations as for a standard Hartree—Fock case, with the
monoelectronic Kohn—Sham matrix % =T + Z + J +
VX instead of the Hamilton operator H = T + Z + 1/r»
(with kinetic energy T and electron-nucleus attraction Z):

E=(Q7 D)+ Y cADJH D))
1

CE=ADT D) + cAD)H DY+ Y, cf®|H1D,)
J=0,1

(20)

As such, only determinants with one difference in the
orbital occupation interact, and no approximation through
the neglect of pure bielectronic integrals as for Hamilton
matrix elements is necessary.

Thus, in the end exactly the same optimization scheme
for the self-consistent orbitals may be employed, for
Hartree—Fock or Kohn—Sham orbitals, including hybrid
functionals with a nonzero exact-exchange term. This is made
possible by the neglect of the pure bielectronic integrals, of
which the exchange part is replaced in Kohn—Sham theory
by the monoelectronic Kohn—Sham potentials.
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