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P. REINHARDT4,5, O. PARISEL4,5, AND J.-P. PIQUEMAL4,5

1 Laboratory of Structural Biology, National Institute of Environmental Health Sciences, MD F0-08,
111 TW. Alexander Dr., Research Triangle Park, NC 27709, USA
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Abstract: We present an overview of the energy functions used in two Anisotropic Polarizable
Molecular Mechanics (APMM) procedures namely SIBFA (Sum of Interactions Between
Fragments Ab initio computed) and GEM (Gaussian Electrostatic Model). As SIBFA is a
second generation APMM scheme based on distributed multipoles, GEM is the first third
generation APMM as it uses distributed hermite densities obtained from density fitting.
The two approaches are formulated and calibrated on the basis of quantum chemistry.
They embody nonclassical effects such as electrostatic penetration, exchange-polarization,
and charge transfer. We address here the technical issues of anisotropy, nonadditivity,
transferability and computational speedup of methods. In addition, we review the sev-
eral ab initio intermolecular energy decomposition techniques that can be used to refine
polarisable force fields. As we summarize their differences and similarities, we present
our own scheme based on Fragment Localized Kohn-Sham orbitals through a Singles-
Configuration Interaction (CI) procedure. We also present a chemically intuitive method
based on the Electron Localization Function (ELF) which allows to unravel the local elec-
trostatic properties beyond atomic centers: i.e., on bonds, lone pairs and π system, an
useful asset to understand bonding in molecules in order to build models

© US Government 2009. Created within the capacity of an US governmental employment and therefore
public domain. Published by Springer-Verlag London Ltd.

137

D.M. York and T.-S. Lee (eds.), Multi-scale Quantum Models for Biocatalysis, 137–172.
DOI 10.1007/978-1-4020-9956-4 6, © Springer Science+Business Media B.V. 2009



138 G.A. Cisneros et al.

Keywords: Polarizable force fields, Intermolecular interactions, Energy decomposition, Density
fitting, Electron localization function, Topological analysis, Localized orbitals, Multipolar
moments

6.1. INTRODUCTION

Nowadays, modern molecular modelling techniques propose numerous potential
applications, from material sciences to protein structure prediction and drug design.
Indeed, classical Molecular dynamics (MD) is now able to provide useful informa-
tion to experimentalist as simulations are getting closer and closer to relevant biolog-
ical timescales. Nevertheless, if MD is now able to produce microsecond trajectories,
one should ask about the possible improvements of such simulations. At this point,
two directions can be taken. The first consists in increasing the speed of MD soft-
wares by coupling improved sampling methodology to massively parallel computers,
having as goal to reach the second timescale. However, if this strategy will probably
offer some interesting insights about biophysical process, there is no doubt that the
question of the accuracy of the used empirical energy functions, the so-called force
fields, should be raised. Indeed, current simulations are mainly aimed to compute
free energies and despite success, actual data are already sufficient to demonstrate
that current molecular mechanics (MM) potentials have serious shortcomings [1].
This can be easily understood when considering that free energy required an accurate
evaluation of both enthalpic and entropic contributions. If entropy can be recovered
through sampling efforts, enthalpy needs to be approximate from their quantum me-
chanical expression. In a way, classical MD can be simply seen as an approximate
quantum Born-Oppenheimer MD approach treating the atomic nuclei as classical
particles subject to interatomic forces. Presently, these latter remain obtained from
empirical potentials far to reproduce first principles results. Therefore, MD should
not be able to quantitatively describe vast numbers of systems dominated by diffi-
cult weak interactions such as H-bonds networks, metalloproteins and metal clus-
ters, highly charges systems etc., where Chemistry and electron correlation/relativity
dominate. For these systems, the right tools are required. In this context, Anisotropic
Polarizable Molecular Mechanics (APMM) procedures have been developed (see
Reference [2] and references therein). These approaches share the common charac-
teristic of including a more evolved representation of the electrostatic contribution to
the interaction energy compared to the usual point charge approximation, allowing
a close reproduction of the anisotropic features of the ab initio Coulomb contribu-
tion. As we will see, some of them use distributed multipoles (sometime damped in
order to include short-range penetration effects) or electronic Hermite densities for
the latest generation. The philosophy of such approaches relies on an extensive use
of quantum mechanics defining the so-called: “bottom-up strategy” [2]. First, the
electrostatic moments or hermites densities are directly obtained from an ab initio
calculation of the considered gas phase isolated molecule and stored in a library.
Second, all intermolecular components of the force field should faithfully reproduce
their ab initio counterpart as obtained from energy-decomposition procedures at the
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Hartree-Fock, DFT or CCSD levels. Because they can reproduce such quantities,
APMM procedures should account for an accurate description of the interactions in-
cluding polarization cooperative effects and charge transfer. They should also enable
the reproduction of local electrostatic properties such as dipole moments an also fa-
cilitate hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) embeddings.

In this contribution, we will review some aspects of this strategy. First, we
will explore some recent ab initio techniques that can be used for the refinement
of APMM approaches. Among them, we will discuss the differences between en-
ergy decomposition approaches namely: Kitaura-Morokuma [3], Constrained Space
Orbital Variations (CSOV) [4–6], Reduced Variational Space (RVS) [7], Ziegler-
Baerends [8, 9] and Symmetry Adapted Perturbation Theory [10] procedures. More-
over, we will focus on a newly developed energy decomposition approach using
Fragment-localized Kohn-Sham orbitals through a Singles-Configuration Interaction
(CI) procedure [11]; and on a general approach to unravel local electrostatic prop-
erties, the so-called DEMEP [12] (Distributed Electrostatic Moments based on the
Electron localization function Partition). In a second part, we will detail two APMM
approaches in development in our labs. The first, called SIBFA (Sum of Interactions
Between Fragments Ab initio computed) [2, 13] is a second APMM generation based
on distributed multipoles. The second, named GEM (Gaussian Electrostatic Model)
[2, 14–16] is the first APPM of the third generation based on electron density. Fo-
cusing on methodology, we will put in perspective the physical basis underlying the
development of such MM energy functions and the possibility for a computation
speedup, a key step to perform simulations.

6.2. AB INITIO TECHNIQUES: FROM INTERMOLECULAR
INTERACTIONS TO LOCAL ELECTROSTATIC PROPERTIES

Intermolecular Energy decomposition analyses (EDA) are very useful approaches to
calibrate force fields. Indeed, an evaluation of the different physical components of
the interaction energy, especially of the many-body induction, is a key issue for the
development of polarisable models.

6.2.1. Intermolecular Energy Decomposition Schemes: Equivalence
Between Terms

However, due to the availability of numerous techniques, it is important to point
out here the differences and equivalence between schemes. To summarize, two EDA
families can be applied to force field parametrization. The first EDA type of approach
is labelled SAPT (Symmetry Adapted Perturbation Theory). It uses non orthogonal
orbitals and “recomputes” the total interaction upon perturbation theory. As com-
putations can be performed up to the Coupled-Cluster Singles Doubles (CCSD)
level, SAPT can be seen as a reference method. However, due to the cost of the
use of non-orthogonal molecular orbitals, pure SAPT approaches remain limited
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to small systems, even if Kohn-Sham orbitals based or local SAPT approaches
tend to overcome such difficulties. The second family of methods is variational
and based on the supermolecule approach (E = EAB − EA − EB) following the
early Kitaura-Morokuma (KM) and Ziegler schemes. It includes also the Constrained
Space Orbital Variations (CSOV) (and the Reduced Variational Space (RVS), essen-
tially similar to CSOV) approach. These methods are limited to the HF or DFT levels.
Following a perturbation terminology, all EDA schemes can be partitioned between
first, second and higher order terms:

E = E1 − E2 − δEhigher−orders + BSSE (6-1)

All schemes furnish two first-order terms. The first is the electrostatic interac-
tion of the frozen monomers denoted Ees in the variational approaches and which is
strictly equivalent to the E10

pol in SAPT. The second is an exchange-repulsion term

Eexch-rep (denoted E10
exch in SAPT).The sum of them is sometime called frozen-core

contribution (EFC) like in the variational CSOV scheme of Bagus et al. This EFC is
also equivalent to the Heitler-London energy, employing the unperturbed monomers
orbitals. At the HF level, despite a different use of operators (V for SAPT, vs. H
for the variational methods), these terms should be equivalent for all approaches if
a reasonable basis set is used. Second-Order terms are more problematic and can
be divided into a so-called induction term and a dispersion component, each one of
these terms being associated to a repulsive second-order exchange term. At the HF
level, the SAPT induction term (E20

pol) should be equivalent to the BSSE corrected
Orbital relaxation term of the Ziegler scheme also called Orbital Interaction. This
latter Orbital interaction term corresponds itself to the sum of polarization (Epol),
charge transfer (ECT) and BSSE term in the CSOV or RVS approaches. The subtle
question of the evaluation of the sole ab initio polarization energy (without charge
transfer), so important for the evaluation of the accuracy of polarizable models, is
important as its evaluation requires to conserve the antisymetry of the wavefunction
through relaxation of the monomers. Such computation remains limited to the CSOV
and RVS scheme as the Morokuma scheme violates the antisymetry leading to an
overestimation of the polarization (and of the charge transfer term) (see References
[14, 17–19] and reference therein). That way the CSOV and RVS Epol (and ECT)
term embodies the Epol-exch term through conserved MOs orthogonality. It is also
important to note that higher order coupling are not included in CSOV and RVS,
that way, such polarization term can be seen as a lower bound for the evaluation of
polarization. Strategies to use these schemes have been previously reported.

SAPT methods remain the only approaches allowing the evaluation of dispersion
(Figure 6-1).

At this point, it is important to notice that in general, the sum of the contributions
do not match exactly E as higher order terms are present. The difference between
the sum of contributions andE is denoted δE. Concerning the variational schemes,
δE is generally small in the CSOV (or RVS) approach thanks to the antisymmetry
conservation and not present in the Ziegler scheme as the EOI term is taking into
account a fully relaxed wavefunction. It is not the case for the KM scheme which
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Figure 6-1. Notations for usual energy decomposition schemes

can embody very large δE (sometime denoted Emix) in presence of charge species.
For other reasons (especially due to some convergence difficulties of the perturbation
series for induction, see Ref. [20–22] for details) the same problem can occur for
SAPT. Table 6-1 summarizes these informations.

6.2.2. Beyond Two-Body Interaction: Fragment-Localized Kohn-Sham
Orbitals via a Singles-CI Procedure

As discussed below, EDA schemes are generally limited to dimer interactions (up
to small trimer for SAPT). If the RVS scheme allows an evaluation of contribution
for more than two molecules at the HF level, EDA methods allowing the inclusion
of electron correlation did not exist up to a very recent time (see Head-Gordon’s
Scheme [23]) for the computation of large assemblies of molecules. We present here
the methodology at the basis of a new potentially linear scaling local approach based
on Fragment-localized Kohn-Sham orbitals via a Singles-CI procedure [11].

6.2.2.1. Method: Fragment-Localized Kohn-Sham Orbitals

In the literature we may find the procedure for creating localized Hartree-Fock
orbitals via an energy minimization based on a CI procedure employing mono-
excitations (see for instance Reference [24]). The scheme starts from a set of given
(guess) orbitals and solves iteratively the Hartree-Fock equations via the steps:

1. Symmetric (Löwdin) orthogonalisation of the orbitals via S−1/2

2. Construction of the Fock matrix
3. Calculation of the total energy
4. Construction and diagonalisation of an approximate Singles-CI matrix
5. Use in first order of the CI coefficients to correct the occupied and virtual molec-

ular orbitals
6. Return to step 1

In step 3, a criterion of convergence may be introduced to terminate the iterations.
Two other points should be mentioned: instead of taking the correct Singles-CI ma-
trix, we may resort to a simpler one, omitting single bi-electronic integrals and using
only Fock-matrix elements as:

〈
�a

i |H|�b
i

〉
≈ Fabδi j − Fi jδab (6-2)



142 G.A. Cisneros et al.

Ta
bl

e
6-

1.
C

on
tr

ib
ut

io
n

to
th

e
to

ta
li

nt
er

ac
tio

n
en

er
gy

fr
om

di
ff

er
en

te
ne

rg
y

de
co

m
po

si
tio

n
sc

he
m

es


E

Fi
rs

to
rd

er
(o

r
Fr

oz
en

C
or

e)
Se

co
nd

O
rd

er
H

ig
he

r
or

de
rs

(δ
E

)

C
on

tr
ib

ut
io

ns
E

le
ct

ro
st

at
ic

s
E

xc
h.

-r
ep

.
C

or
re

la
tio

n
co

rr
ec

tio
ns

In
du

ct
io

n
E

xc
ha

ng
e-

in
du

ct
io

n
In

d.
an

d
ex

ch
-I

nd
.

C
or

re
la

tio
n

co
rr

ec
tio

ns

D
is

pe
rs

io
n

M
et

ho
ds

SA
PT

Y
es

Y
es

Y
es

(u
p

to
C

C
SD

)
Y

es
Y

es
Y

es
Y

es
(u

p
to

C
C

SD
)

Y
es (+

ex
ch

an
ge

di
sp

er
si

on
;

up
to

C
C

SD
)

Y
es

(u
p

to
th

ir
d

or
de

r)

K
ita

ur
a-

M
or

ok
um

a
Y

es
Y

es
N

o
Y

es (E
in

d
=

E
po

l+
E

ct
)

N
o

N
o

N
o

Y
es

(b
y

di
ff

er
en

ce
fr

om


E
)

C
SO

V
Y

es
Y

es
T

hr
ou

gh
D

FT
or

M
C

SC
F

Y
es (E

in
d
=

E
po

l+
E

ct
)

Y
es

(i
nc

lu
de

d
in

E
po

l
an

d
E

ct
)

T
hr

ou
gh

D
FT

or
M

C
SC

F
N

o
Y

es
(b

y
di

ff
er

en
ce

fr
om


E

)

Z
ie

gl
er

/B
ae

re
nd

s
Y

es
Y

es
T

hr
ou

gh
D

FT
Y

es
(E

in
d
=

E
O

I)
Y

es
(i

nc
lu

de
d

in
E

O
I)

T
hr

ou
gh

D
FT

N
o

N
o

(i
nc

lu
de

d
in

E
O

I)



Design of Next Generation Force Fields 143

From the obtained wavefunction:

� = �0 +
a∑

i

ca
i �

a
i (6-3)

we use the coefficients for correcting the orbitals as:

ϕ′
i = ϕi +

∑

a

ca
i ϕa(occupied orbitals) (6-4)

ϕ′
a = ϕa −

∑

i

ca
i ϕi (virtual orbitals) (6-5)

Including the correction for the virtual orbitals ensures the orthogonality between
occupied and virtual orbitals. Nevertheless, within the two separate orbital spaces,
the orbitals must be re-orthogonalized in each iteration.

The advantage of the scheme lies in possibility to cut indices with a distant depen-
dent selection criterion, rendering the method potentially linear scaling. As a conse-
quence, orbitals for periodic structures may be created in this way (see References
[25, 26]).

We may ask now, whether the same procedure may be applied to density-functional
theory, just by replacing the Fock operator by the corresponding Kohn-Sham opera-
tor. To this end we have to look at the minimization of the total energy with respect
to the density of a multi-determinantal wavefunction �. We write the density as:

� = c0�0 +
∑

i

cI� I

ρ(r) = N
∫
. . .

∫
d3r1 . . . d

3rN−1

∣∣∣�2(r1, . . . , rN−1, r)
∣∣∣

= c2
0ρ�0(r)+

∑

i

c2
Iρ�I (r)+ 2

∑

I<J

cI cJϕ
I
k (r)ϕ J

l (r)

(6-6)

Following Reference [27], we may write the variation of the exchange-correlation
energy as:

∫
υXC (r)ρI (r)d3r = 〈�I | V XC |�I 〉

∫
υXC (r)ϕl

k(r)ϕl
j (r)d3r = 〈�I | V XC |�J 〉 (6-7)

∂ρ(r)
∂cI

= 2cIρ�I (r)+ 2
∑

J 
=I

cJϕ
I
k (r)ϕ J

l (r) (6-8)
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δE XC [ρ]
δcI

= 2cI 〈�I | V XC |�I 〉 + 2
∑

I 
=J

cJ 〈�I | V XC |�J 〉 (6-9)

As the same construction holds for the Coulomb energy and the mono-electronic
part, we obtain equations completely analogous to the system of linear equations for
the Singles-CI:

E = 〈�0| K |�0〉 +
∑

I

cI 〈�0| K |�I 〉

cI E = 〈�0| K |�I 〉 + cI 〈�I | K |�I 〉 +
∑

J 
=0,I

cJ 〈�I | K |�J 〉 (6-10)

which we have to solve for the coefficients cI at each SCF iteration. Indeed, the
only difference to Hartree-Fock theory lies in the use of the Kohn-Sham operator
K = T + Z + J + VXC instead of the usual Hamiltonian H = T + Z + 1/r12, reduced
in the CI matrix to Fock-matrix elements.

6.2.2.2. Usefulness: From Energy Decomposition to Local Properties

Apart from the question of linear scaling methods, we may employ the so-
constructed orbitals for studying weakly interacting complexes. Of course, usual
functionals do not include the important dispersion terms, but such an approach
remains effective to study induction in large assemblies of molecules and, as we will
see, for extracting monomer properties and interaction-induced changes of these.

(a) Application to energy decomposition: We first tested the accuracy our ap-
proach by implementing a Ziegler-Baerends type scheme by separately computing
the electrostatic, exchange-repulsion and Orbital Interaction components of the in-
teraction energy.

As expected we observed the invariance to orbitals localization of our decomposi-
tions scheme on a previously investigated linear water dimer configuration: localized
and canonical orbitals lead to rigorously the same energy contributions, which is not
the case for all decomposition schemes (due to projections or approximative orbital
rotations). Concerning force field parametrization, it is interesting to observe the in
influence of the addition of the second monomer basis functions. It clearly affects
the energy components by diminishing the value of electrostatic and increasing the
value of exchange-repulsion energy values. This “BSSE-like” (BSSE stands for Ba-
sis Set Superposition Error) effect is then clearly pronounced for Frozen Core (or
first order in the SAPT terminology) as BSSE clearly acts on the other components.
Table 6-2 displays such effect on the canonical water dimer. The decompositions
have been easily extended beyond dimer systems [11], allowing the calculation of
many-body contributions in contrast to SAPT or CSOV calculations, often restricted
to the implementation of 2-body terms [14]. The scheme is also interesting to com-
pute local fragment properties such as dipoles moments. As an example we may look
at the dipole moment of two interacting NH3 molecules. For each molecule we may
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Table 6-2. Effect of dimer basis set on the components of the interaction energy

Method Es Eexch-rep EFC EOI + BSSE E

Monomers in the respective monomer basis
HF(6d) −8.27 6.91 −1.36 −2.18 −3.55
B3LYP(6d) −8.03 7.48 −0.55 −3.30 −3.86

Monomers in the dimer basis
HF(6d) −8.30 7.02 −1.28 −2.27 −3.55
B3LYP(6d) −8.18 6.87 −1.31 −3.04 −4.35

Table 6-3. Comparison of the dipoles of the isolated individual monomers (dipole M) compare to the
dipole moments of molecules within the dimer (dipole D) via the interaction, calculated with different
functionals. Units are atomic units, and we give as well the difference in length and orientation

NH3-NH3 Dipole(M) Dipole(D) Difference angle

HF 0.613 0.664 0.051 8.8
0.613 0.690 0.077 0.1

BLYP 0.552 0.635 0.0803 15.5
0.535 0.677 0.142 1.2

calculate a dipole moment separately, and look for the deformation of the monomer
orbitals (M) when constructing the dimer orbitals (D) via the described Singles-CI
procedure. We have a good trace for the deformation, as the iterations only deform
in a minimal sense the starting guess orbitals (Table 6-3).

6.2.3. Distributed Electrostatic Moments Based on the Electron
Localization Function Partition

(a) Theory: In addition, as a fine understanding of cooperative effects is required
in order to test the validity and the transferability of force fields parameters, some
of us have been developing methodologies enabling the evaluation of local chemi-
cally intuitive distributed electrostatic moments using the topological analysis of the
Electron Localization Function (ELF) [12].

For over a decade, the topological analysis of the ELF has been extensively used
for the analysis of chemical bonding and chemical reactivity. Indeed, the Lewis’ pair
concept can be interpreted using the Pauli Exclusion Principle which introduces an
effective repulsion between same spin electrons in the wavefunction. Consequently,
bonds and lone pairs correspond to area of space where the electron density generated
by valence electrons is associated to a weak Pauli repulsion. Such a property was
noticed by Becke and Edgecombe [28] who proposed an expression of ELF based
on the laplacian of conditional probability of finding one electron of spin σ at r2,
knowing that another reference same spin electron is present at r1. Such a function
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was later linked by Savin [29] to a local excess of kinetic energy due to the Pauli
repulsion and reformulated by taking the homogenous electron gas as reference.
That way, the ELF function (denoted η) can be interpreted as a measure of the Pauli
repulsion in the atomic or molecular space and allows an access to the probability of
finding two same spin electrons:

η(r) = 1

1 + ( D
D0
)2

(6-11)

where D is a measure of kinetic energy excess and D0 is the kinetic energy of a same
density homogenous electron gas. ELF is defined to have values restricted between
0 and 1 in order to tend to 1 where parallel spins are highly improbable (there is
therefore a high probability of opposite-spin pairs), and to zero in regions where
there is a high probability of same-spin pairs. The ELF function can be interpreted
as a signature of the electronic-pair distribution but, in contrast to pair functions, it
can be more easily calculated and interpreted.

Once computed on a 3D grid from a given ab initio wave function, the ELF func-
tion can be partitioned into an intuitive chemical scheme [30]. Indeed, core regions,
denoted C(X), can be determined for any atom, as well as valence regions associated
to lone pairs, denoted V(X), and to chemical bonds (V(X,Y)). These ELF regions,
the so-called basins (denoted �), match closely the domains of Gillespie’s VSEPR
(Valence Shell Electron Pair Repulsion) model. Details about the ELF function and
its applications can be found in a recent review paper [31].

It has been recently shown [12] that the ELF topological analysis can also be
used in the framework of a distributed moments analysis as was done for Atoms in
Molecules (AIM) by Popelier and Bader [32, 33]. That way, the M0(�) monopole
term corresponds to the opposite of the population (denoted N):

M0(�) = −
∫

�

ρ(r)dτ = −N (�) (6-12)

The first moments or dipolar polarization components of the charge distribution
are defined by three-dimensional integrals for a given basin � according to:

M1,x (�) = −
∫

�

(x − Xc)ρ(r) dτ

M1,y(�) = −
∫

�

(y − Yc)ρ(r) dτ

M1,z(�) = −
∫

�

(z − Zc)ρ(r) dτ

(6-13)

where Xc, Yc, and Zc are the Cartesian coordinates of the basin centres.
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The five second-moment spherical tensor components can also be calculated and
are defined as the quadrupolar polarization terms. They can be seen as the ELF basin
equivalents to the atomic quadrupole moments introduced by Popelier [32] in the
case of an AIM analysis:

M2,zz(�) = −1

2

∫

�

(3(z − Zc)
2 − r2)ρ(r) dτ

M2,x2−y2(�) = −
√

3

2

∫

�

[(x − Xc)
2 − (y − Y 2

c )]ρ(r) dτ

M2,xy(�) = −√
3
∫

�

(x − Xc)(y − Yc)ρ(r) dτ

M2,xz(�) = −√
3
∫

�

(x − Xc)(z − Zc)ρ(r) dτ

M2,yz(�) = −√
3
∫

�

(y − Yc)(z − Zc)ρ(r) dτ

(6-14)

The first- or second-moment basin magnitude is then defined as the square root of
the sum of squared components:

|M(�)| =
√∑

i

Mi (�)2 (6-15)

Thanks to the invariance of the magnitude of any multipole rank (|M1| or |M2|)
with respect to the axis for a given bond or lone pair, the approach allows us to
compare the dipolar or quadrupole polarization of a given basin in different chemical
environments.

That way, the Distributed Electrostatic Moments based on the ELF Partition (DE-
MEP) allows computing of local moments located at non-atomic centres such as
lone pairs, σ bonds and π systems. Local dipole contributions have been shown
to be useful to rationalize inductive polarization effects and typical hydrogen bond
interactions. Moreover, bond quadrupole polarization moments being related to a
π character enable to discuss bond multiplicities, and to sort families of molecules
according to their bond order.

(b) Applications: It is then possible to compute a chemically intuitive distributed
analysis of electrostatic moments based on ELF basins. As this partition of the to-
tal charge density provides an accurate representation of the molecular moments
(dipole, quadrupole etc. . .), the distributed ELF electrostatic moments allows the
computation of local moments located at non-atomic centers such as lone pairs,
bonds and π systems. It has been recently shown [12] that local dipole contributions
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Figure 6-2. ELF moments for
the canonical water dimer
(dipole moments in Debye, M1
in au.)

V(O) N = 2.15
|M1| = 0.928

V(O) N = 2.50
|M1| = 0.998

V(O)  N = 2.37 e
|M1| = 0.951

Donor
μ = 2.09 D

Acceptor
μ = 2.06 D

π Type, ex: H2CO)
 (bonding order ≥ 2)

sType, ex: CH3OH
 (bonding order = 1)

Figure 6-3. Correlation between the quadrupolar polarization (|M2|) of CO bonds in selected molecule
and of the bond multiplicity
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Figure 6-4. Electron localization function domains (concentration of electrons) in glycine. Lone pair
domains are displayed in red

can be used to rationalize inductive polarization effects and so should be able to give
some new insight towards a better understanding of local density modifications due
to the cooperative effects. Figure 6-2 shows the difference of local dipole moment
within the canonical water dimer. We can clearly distinguish the acceptor molecule
from the donor one. Moreover, the local M1 value of the lone pair involved in the
hydrogen bond (i.e. Acceptor molecule) is clearly higher than for the lone pairs of
the donor molecule.

Following the same idea, it has been shown that the quadrupole moment of a bond
was related to its π character, allowing the discussion on its multiplicity. Then it be-
comes possible to discuss the influence of the intra- or inter-molecular environment
on a given constituent of a molecule. Figure 6-3 displays such influence on a C O
bond through a large set of molecules.

In a recent study of the transferability of moments, it has shown that stable trends
are actually observed for the chemical bond features along investigated test peptide
chains (Figure 6-4 and Table 6-4).

Such results are interesting for force field development as they clearly establish
the existence of conserved “electrostatic blocks” within amino acids, an encouraging
step for transferability of force field parameters.

6.3. DEVELOPMENT OF NEXT GENERATION POLARIZABLE
FORCE FIELDS: FROM SIBFA TO GEM

6.3.1. Sum of Interaction Between Fragments Ab Initio (SIBFA)

SIBFA [2, 13] is a polarizable molecular mechanics procedure, formulated as a sum
of five energy contributions, each of which is destinated to reproduce its counterpart
from reference EDA ab initio computations. The intermolecular interaction energy
is formulated as:

Eint = EMTP∗ + Erep∗ + Epol + Ect + Edisp(+ELF) (6-16)
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Which denotes respectively the short-range penetration corrected electrostatic
multipolar (EMTP∗ ) energy, short-range repulsion (Erep∗ ), polarization (Epol), charge-
transfer (Ect), and dispersion (Edisp) contributions. In presence of an open-shell
cation, a ligand field correction is introduced (ELF).

The connectedness of SIBFA to quantum chemistry stems from the use of dis-
tributed multipoles and polarizabilities. They are derived from the molecular orbitals
of any given molecular fragment using procedures due to Claverie and coworkers
[34] concerning the multipoles and by Garmer and Stevens concerning the polariz-
abilities [35, 36]. They are then stored in the SIBFA library of fragments along with
the fragment internal geometry and types of successive atoms and used in subsequent
inter- or intramolecular interactions that involve that fragment. SIBFA can be seen
as a set of parametric equations aiming to reproduce the required integrals produced
by Localized Molecular Orbitals Theory.

We have previously [2] emphasized the features that an MM methodology should
have in view of a meaningful reproduction of QC, namely separability, anisotropy,
non-additivity and transferability.

Non-additivity and anisotropy of the interaction potential are critical features
in molecular recognition and docking. Non-additivity in SIBFA stems from both
second-order contributions, Epol and Ect. That of Epol stems from the vector ad-
dition of the polarizing fields on a given centre and the use of the square of its
norm. Iteratively accounting for the effects of the induced dipoles further enhances
non-additivity. That of Ect is conferred by the modulation of the ionization potential
of the electron donor on the one hand, and of the electronic affinity of the elec-
tron acceptor on the other hand, by the electrostatic potential that each undergoes
in a multimolecular complex. Moreover, such potentials embody components due
to the induced dipoles, whose amplitudes themselves depend non-additively upon
the fields. An additional coupling to nonadditive polarization effects stems from the
increase of the effective radius of the electron donor, intervening in the exponential
of Ect, by a term proportional to the magnitude of the field undergone by the electron
donor.

The anisotropy of EMTP∗ stems for the use of distributed multipoles on atoms
and on the barycentres of the chemical bonds, thus advancing beyond the assump-
tion of spherical symmetry incurred by the use of atom-centred point-charges. That
of Epol stems from: (i) the multipolar nature of the polarizing field; (ii) the use of
lone-pair polarizabilities that are off-centred, being located on the barycentres of the
Boys localized lone-pair orbitals; (iii) and the use of polarizability tensors instead of
scalars. The anisotropies of both short-range contributions, Erep and Ect, which are
overlap-dependent terms, is conferred by the use of localized lone-pairs accounting
for hybridization. The anisotropy of Edisp is, similarly, conferred by the introduction
of fictitious atoms on the localized lone pairs. We detail here the methodology used
for each one of the components of the SIBFA intermolecular interaction energy. Such
equations have been shown to be transferable for intermolecular interactions, see
Reference [2] and references therein.
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• Multipolar Electrostatic contribution: penetration corrected EMTP∗
In SIBFA, electrostatics is computed upon using distributed multipoles (monopoles,
dipoles, quadupole) located on atoms and bond midpoints as:

EMTP = Emono-mono + Emono-dip + Emono-quad + Edip-dip + Edip-quad + Equad-quad
(6-17)

If we review the separated components of EMTP, the electrostatic energy appears
mainly dominate by the terms involving the charge (Table 6-5).

However, if we analyse the functional form used to compute the charge–charge
interaction,

Emono-mono = qi.qj/r (6-18)

where r is the distance between qi and qj, we can easily see that it remains very
different from the quantum chemistry formulation [6]:

Ec = −2
∑

i

∑

υ

Zν

∫
(|ϕi(1)|2)/(r1ν)dι 1 − 2

∑

j

∑

μ

Zμ

∫
(|ϕi(1)|2)/(r2μ)dι 2

+ 4
∑

i

∑

j

∫
(|ϕi(1)|2|ϕj(2)|2)/(r12)dι 1dι 2 +

∑

μ

∑

υ

Zμ.Zν/rμν (6-19)

where μ and ϕi are respectively the nucleus and the unperturbed MOs of monomer
A ; and ν and ϕj, those of monomere B.

Indeed, the ab initio integrals exhibit an exponential decay at short-range which
is not present in any of the EMPT energy terms. This comportment of integrals is at
the origin of the so-called penetration energy, an overlap dependant term which is,
by definition, absent of the long-range multipolar approximation.

In our approach [18, 37], we have modified the formulation of the terms involving
the charges (mono-mono, mono-dip and mono quad term) to screen the electrostatic
interaction.

Table 6-5. Contributions to the multipolar electrostatic energy (kcal/mol) for various complexes at their
equilibrium geometry

Complexes mono-mono. mono-dip. mono-quad. dip-dip. dip-quad. Quad-quad.

(H2O)2 linear −3.3 −2.6 −1.1 −0.5 −0.1 −0.3
(HCONH2)2 linear −7.3 −2.8 1.6 0.1 −0.7 0.6
Cu2+ – H2O −46.2 −27.9 0.9 0.0 0.0 0.0
HCOO− – H2O

monodentate
−11.3 −4.9 −0.3 −0.1 −0.7 0.6

H3CNH+
3 – H2O −12.5 −7.6 0.1 −0.2 −0.1 0.0
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First, we have modified the mono-mono term (now denoted Emono-mono∗) to pro-
pose a functional form mimicking the three terms present in ab initio, namely the
nucleus–nucleus repulsion, the electron–nucleus attraction and the electron–electron
repulsion. For two interacting centers i and j, the modified mono-mono term is:

Emono-mono∗ = [ZiZj − {Zi(Zj − qj)(1 − exp(−αi.r))+ Zj(Zi − qi)

(1 − exp(−αj.r))}
+ (Zi − qi)(Zj − qj)(1 − exp(−βi.r))(1 − exp(−βj.r))]∗(1/r) (6-20)

Where Zi and Zj are the valence electrons for the i and j atoms. This number is
set to 0 for sites located on bonds. αi and βi are parameters depending on effective
van der Waals radii (denoted rvdw) and given by:

αi = γ/rvdw i and βi = δ/rvdw i

γ and δ are fixed parameters depending on the reference ab initio level (method-
ology and chosen basis set). They are transferable to any atom and are evaluated
once and for all upon fitting on a set of H2 or H2O dimers geometries. For bonds
monopoles, the rvdw values are given by the arithmetic mean of the radii forming the
bond.

From a physical point of view, this new formulation includes exponential terms
that are in agreement with the observed ab initio and experimental results. Moreover,
it is easy to verify that the new expression converges to the classical one when r
increases. That way, at long range, where the multipolar approximation is valid, the
exponential part dies whereas, at short distances, the monopole–monopole interac-
tion embodies a part of the penetration energy. Consequently, Emono-mono∗ has the
correct dependence at any range.

The second modification acts on the monopole-dipole term.

Emono-dip = −μj.ξ (6-21)

Where ξ, the electric field due to a charge qi located at a point j is equal to:

ξ = qirij/rij
3 (6-22)

where rij is the vector oriented along r from i towards j.
We chose here to only modify ξ to obtain the Emono-dip

∗ component:

Emono-dip∗ = −μj.ξ
∗ (6-23)

where

ξ∗ = {Zi − (Zi − qi)(1 − exp(−ηr))}.rij/r
3
ij (6-24)
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η is given by:

η = χ/((rvdw i + rvdw j))/2

As for the charge-charge term, χ is a constant depending on the chosen level of
reference ab initio computation and converges to the classical form as r increases.

At this level, our formulation includes a penetration correction for terms varying
like R−1 (monopole-monopole), like R−2 (monopole-dipole) but does not include
any correction for terms varying like R−3 (dipole-dipole and monopole-quadupole).
We then added a correction for the monopole-quadupole interaction.

For the evaluation of this term, we used a non usual formalism (see Ref. [20]
and references therein), the so-called axial quadupole. Indeed, it is possible to define
any quadupole as the sum of 3 axial quadupoles oriented towards the main axis
(e1, e2, e3) of a local frame. We then obtain:

Q =
3∑

i=1

Qij(ei ⊗ ej) (6-25)

Thanks to tensors mathematic properties, it is possible to add the same constant
to each one of the diagonal terms, which allows the elimination of one of the axial
qaudrupoles.

That way, the mono-quad interaction energy is given by:

Emono-quad = Emq1 + Emq2 (6-26)

where Emq1 and Emq2 are respectively the monopole-axial quadupole interaction
(Emq1 and Emq2 are different and represent the true quadupole) given by:

Emq1 = q∗(Q1/2r3)[3(a.r/r)2 − 1] (6-27)

Where a is the unit vector defined by the local frame defining the axial quadupole,
r is the vector oriented towards r from the monopole to the axial quadupole. Qa is
the corresponding matrix element. Following the modification of the charge-dipole
interaction, we introduced a modified mono-quad interaction, namely Emono-quad∗ :

Emono-quad∗ = Emq1∗ + Emq2∗ (6-28)

with:

Emq1∗ = {Zi − (Zi − qi)(1 − exp(−ϕr)){∗ϕ(Qa/2r3)[3(a.u)2 − 1] (6-29)

ϕ is given by:

ϕ = �/(rvdw i + rvdw j)/2

� is a constant dependant on the chosen level of reference ab initio computation.
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To conclude, the penetration corrected EMTP∗ interaction energy is then computed
as:

EMTP∗ = Emono-mono∗ + Emono-dip∗ + Emono-quad∗ + Edip-dip + Edip-quad + Equad-quad

• Short Range exchange-repulsion: E∗
rep

To determine an expression of Erep
∗, we chose to follow the theoretical results of

Murrell [38, 39] who proposed a simplified ab initio perturbation scheme to rep-
resent the exchange-repulsion energy based on an overlap expansion of localized
Molecular Orbitals (MOs). Studying the interaction between hydrogen atoms, they
shown that a KS2/R relation, S being the overlap between MOs, was not able to ac-
curately reproduce the exchange-repulsion energy. They then proposed an extended
S2(AR−1+BR−2) expression that we have used to formulate Erep

∗. Following early
expression (see References [2, 13] and references therein) based on LMOs approxi-
mation derived by Claverie, we have expressed Erep

∗ [18, 40, 41] as a sum of bond-
bond, bond-lone pair and lone pair-lone pair repulsion:

Erep
∗ = C1(

∑

AB

∑

C D

rep∗(AB,CD)+
∑

AB

∑

Lγ

rep∗(AB,Lγ)+
∑

Lα

∑

C D

rep∗(Lα,CD)+
∑

Lα

∑

Lγ

rep∗(Lα,Lγ)) (6-30)

Where each one of the repulsion term includes two components: one varying like
1/R, the other like 1/R2:

Rep∗(AB,CD) = Nocc(AB)Nocc(CD)S2(AB,CD)/RAB,CD + Nocc(AB)Nocc

(CD)S2(AB,CD)/(RAB,CD)
2 (6-31)

AB and CD denoted the center positions of the bonds formed by atoms A and B;
and C and D respectively. Lα and Lγ represent the lone pair positions. As we will see,
this formulation takes into account bonds and lone pairs hybridation, each one of the
term depending of an overlap functional. Nocc(AB) and Nocc(CD) are the electron
occupation numbers of the AB and BC bonds. Therefore, Nocc is equal to 2 for usual
bonds and lone pairs. RAB,CD is the distance between the barycenters of the AB and
CD bonds.

The S overlap expression relies on the general situation where 4 atoms form 2
bonds having their valence electrons involved in spn hybrid Mos. In the context of
Slater orbitals, cs et cp are the hybridation coefficients and, for example, S is then
formulated for the bond-bond term as:

S(AB,CD) = (csIcsk〈2sl2sk〉 + cpIcsK〈2pσl2sK〉cos(IJ, IK)

+ cpKcsl〈2pσK2sl〉cos(KL,KI)+ cpIcpK〈2pσl2σK〉cos(IJ, IK)cos(KL,KI))
(6-32)
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To simplify the problem, we introduce the following approximation:

〈2pσA2sC〉 = mAC〈2sA2sC〉 (6-33)

mAC is a parameter obtained from computations of overlap integrals between
atoms A and B obtained from Mulliken [42] and Roothaan [43] approximations using
Slater orbitals. Their values are tabulated and depend on a given atoms couple.

〈2sA2sC〉 can be approximate by an exponential depending on the distance sepa-
rating atoms A and C and modulated on effective van der Waals radii:

〈2sA2sC〉 = MAC exp(−αρAC) (6-34)

with

ρAC = RAC/4
√

WAWC

and

MAC =
√

KAC (1 − QA/N A
V AL)(1 − Qc/N C

V AL)

QA and QC are the charges obtained from the multipolar expansion of the interact-
ing A and C molecular charge distributions, N A

V AL and N C
V AL being their respective

number of valence electrons. WA and WC are the A and C atoms effective van der
Waals radii. KAC is a proportionality factor tabulated upon the atomic numbers of
the A and C atoms. α is a constant fixed to 12.35. The same treatment is applied to
the others terms of the repulsion energy.

It is important to point out that recent results on density based overlap integrals
[16] confirm the interest of the formulation of Erep

∗ as a sum of bond-bond,
bond-lone pair and lone pair-lone pair repulsion: indeed, core electrons do not
contribute to the value of the overlap integrals.

• Polarization contribution
Epol also relies on a local picture as it uses polarizabilities distributed at the Boys
LMOs centroids [44] on bonds and lone pairs using a method due to Garmer et al.
[35]. In this framework, polarizabilities are distributed within a molecular fragment
an therefore, the induced dipoles do not need to interact together (like in the Appleq-
uist model) within a molecule as their value is only influenced by the electric fields
from the others interacting molecules.

The general expression of the polarization energy at center I located at the centroid
of an LMO of a A molecule is:
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Epol(i) = −0.5
∑

j

μ(i)E0( j)

μ(i) = α(i)
xyz∑

j

E(μ(i))+ E0( j)
(6-35)

E0 and E (μ(i)) are respectively the electric fields generated by the permanent
and induced multipoles moments. α(i) represents the polarisability tensor andμ(i)
is the induced dipole at a center i. This computation is performed iteratively, as Epol
generally converges in 5–6 iterations. It is important to note that in order to avoid
problems at the short-range, the so-called polarization catastrophe, it is necessary
to reduce the polarization energy when two centers are at close contact distance. In
SIBFA, the electric fields equations are “dressed” by a Gaussian function reducing
their value to avoid such problems.

The initial electric field generated by a centre i of molecule A on a center j of
molecule B is denoted Einit

i→ j is modified by a Gaussian function denoted S [45] as:

Efinal
i→ j = (1 − S(i, j))Einit

i→ j

S(i, j) = �i E exp(−�(R2
i j )/(rvdw(i)+ rvdw( j))

(6-36)

Rij is the distance between centers i and j. �i is the monopole associated to center i.
E and � are empirical parameters associated to each atom types as rvdw are the atom
effective radii.

It is important to point that parametrization procedure of the short-range damp-
ing is really important. In SIBFA, in order to embody short-range penetration and
exchange-polarization effects, the fit is performed upon CSOV (or RVS) polariza-
tion energy which embodies exchange effects (see Section 6.1). To do so, the SIBFA
polarization energy “prior iterating” is adjusted to the CSOV value which corre-
sponds to the relaxation of a molecule A in the field of a frozen B molecule (before
the compution of higher-orders induction terms δE). Details can be found in Refs.
[18, 19].

• Charge transfer contribution
As for Erep

∗, Ect is derived from an early simplified perturbation theory due to Murrel
[46]. Its formulation [47, 48] also takes into account the Lα lone pairs of the electron
donor molecule (denoted molecule A). Indeed, they are the most exposed in this case
of interaction (see Section 6.2.3) and have, with the π orbital, the lowest ionization
potentials. The acceptor molecule is represented by bond involving an hydrogen (de-
noted BH) mimicking the set, denoted φ∗BH, of virtual bond orbitals involved in the
interaction.
Ect is expressed as:

Etc = −2C
∑

Lα

Nocc(α)(Tαβ∗)2/�Eαβ∗ (6-37)
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C is a constant which has been calibrated in order to reproduce Ect at the equi-
librium geometry of the water dimer. This value is transferable for all non metallic
acceptors. Nocc(α) is the occupation number Lα lone pair.

Tαβ∗ is a function of:
i) The transition density overlap of the Lα donor lone pairs and the bond BH cen-

troid, expressed with the same approximations as Erep∗ .
ii) The electrostatic potential applied on A by all the other molecules (

∑
C

VC→A). It

is important to point out that the fields due to the polarization converged induced
dipoles are taken into account in order to introduce an explicit link between po-
larisation and charge transfer.
Eαβ∗ is the energy is the energy required to allow an electron transfer from

an orbital α of molecule A towards a virtual β∗ orbital on molecule B. It can be
expressed as:

�Eαβ∗ = (ILα +
∑

C

VC→A)− (Aβ∗ +
∑

C

VC→B) (6-38)

ILα is the ionization potential of the Lα lone pair as Aβ∗ is the electronic affinity of
the electron acceptor. Here also, the introduction of the final iterated field of induce
dipole allow to take into account the many-body properties of Ect.

Here also, Ect has its ab initio counterpart within the CSOV framework. The sum
of Epol and Ect matchs the EOI contribution at the HF and DFT level and the SAPT
induction when δE remains small (see Section 6.1).

• Dispersion contribution
Edisp [49, 50] is coupled to an exchange-dispersion term and is computed as an
expansion of Cn terms: C6/Z6, C8/Z8 et C10/Z10, Z being expressed as:

Z = rij/
√

vdwA.vdwB

rij is the distance between atoms i and j; vdwA and vdwB are the effective radii
of the involved atoms. The C6, C8 and C10 coefficients are empirical parameters
adjusted on H2 dimers SAPT computations. Each one of the Cn terms are damped at
short-range by the following function:

Edamp(n) = (1/Rn)Lij exp(−adamp(n)D(i, j)) (6-39)

where:

D(i, j) = ((vdwA + vdwB)bdamp/Rij)− 1

Lij, adamp and bdamp are parameters; n can be 6, 8 ou10.
This dispersion energy is coupled to an exchange-dispersion component:

Eexch-disp = Lij(1 − Qi/Nval(i))(1 − Qj/Nval(j))Cexch exp(−βecxcZ) (6-40)
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Qi and Qj are the net charges of atoms i and j; Nval(i) and Nval(j) their number
of valence electrons. Cexch and βexch are empirical parameters. Some additional re-
finements exist within SIBFA as explicit addition of lone pairs for the exchange term
[50].

• Ligand field contribution
To correct the energy function from ligand field effects (presently in the case of open-
shell cations), SIBFA uses the formalism of the Angular Overlap Model (AOM) [51–
53]. The AOM [52] is based on the fact that the relative changes of d orbitals energies
caused by ligand field effects can be associated to the overlap of these orbitals with
the ligands orbitals. As intermolecular overlap integral can be factorized into radial
and angular parts, it is then possible to consider the radial part as a constant for a
given intermolecular distance. That way, it can be introduced as a parameter, specific
of a given metal/ligand couple, whereas the angular part can be exactly computed as
it depends only on the relative orientation of the metal d orbitals and of those of the
ligands. More precisely, the AOM treatment can be seen as an effective Hamiltonian
built on the basis of d orbitals. Its evaluation uses spherical coordinates (θ, φ) and
requires the diagonalization of an energy matrix. For each computation, each ligand
is considered separately as the total matrix reflects the sum of the local perturbation
of the d orbitals due to ligands as each matrix element is the sum of the contribution
of each ligands. The construction of the energy matrix uses angular coefficient de-
noted Di (see Table 6-6) which give the values of overlap of a ligand involved in a σ

interaction with the metal.
In order to be able to evaluate the radial part in all point of space and to adapt

the AOM to the SIBFA intermolecular potential, we have introduced an exponential
dependence of the radial overlap following a procedure introduced by Woodley et al.
[54]:

eλ = a + b.exp(−α.r) (6-41)

r is the metal-ligand distance; a, b and α are parameters, specific of a given metal-
ligand couple.

It is then possible to construct the energy matrix [51, 53]:

Table 6-6. angular coefficients for the
different d orbitals involved d in a σ

interaction with ligands

i Di (θi ,φi )

z2 1/2 (3 cos2 θ–1)
yz 1/2 (

√
3 sin(2θ) sin φ)

xz 1/2 (
√

3 sin(2θ) sin φ)
xy 1/4 (

√
3(1– cos 2θ) sin 2φ)

x2-y2 1/4 (
√

3(1– cos 2θ) cos 2φ)
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Hdd’ =
∑

l

el
λ < d|l >< l|d’ > (6-42)

Its eigenvalues (εi) correspond to the relative energies of the d orbitals of the
metal. These energies are used to computed the ligand field energy contribution de-
noted ELF.
For a dn system:

ELF = −2
5∑

i=1

εi +
n∑

i=1

ρiεi (6-43)

Where ρi are the d orbital occupation numbers (0, 1 or 2).

6.3.2. The Gaussian Electrostatic Model (GEM)

As the SIBFA approach relies on the use of distributed multipoles and on approx-
imation derived form localized MOs, it is possible to generalize the philosophy to
a direct use of electron density. That way, the Gaussian electrostatic model (GEM)
[2, 14–16] relies on ab initio-derived fragment electron densities to compute the
components of the total interaction energy. It offers the possibility of a continuous
electrostatic model going from distributed multipoles to densities and allows a direct
inclusion of short-range quantum effects such as overlap and penetration effects in
the molecular mechanics energies.

6.3.2.1. From Density Matrices to GEM

This method relies on the use of an auxiliary gaussian basis set to fit the molecular
electron density obtained from an ab initio one-electron density matrix:

ρ̃ =
N∑

k=1

xkk(r) ≈ ρ =
∑

μν

Pμνφμ(r)φ
∗
v (r) (6-44)

Do so, we use the formalism of the variational density fitting method [55, 56]
where the Coulomb self-interaction energy of the error is minimized:

E2 = 1

2

∫∫ [ρ(r1)− ρ̃(r1)][ρ(r2)− ρ̃(r2)]
|r1 − r2| dr1dr2 = 〈ρ − ρ̃‖ρ − ρ̃〉 (6-45)

inserting the right hand of Eq. (6-44) into Eq. (6-45), we obtained:

E2 = 1

2

∑

μ,ν

∑

σ,τ

Pμν Pστ 〈μν‖στ 〉 −
∑

l

xl

∑

μ,ν

Pμν〈μν‖l〉 + 1

2

∑

k

∑

l

xk xl〈k‖ l〉
(6-46)
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E2 from Eq. (6-3) can be minimized with respect to the expansion coefficients xl

and a linear system of equations can be obtained:

∂E2

∂xl
= −

∑

μν

Pμν〈μν‖ l〉 +
∑

k

xk〈k‖ l〉 (6-47)

Equation (6-5) is used to determine the coefficients:

x = A−1b (6-48)

Where

bl =
∑

μν

Pμν〈μν‖ l〉 and Akl = 〈k‖ l〉

In a standard density fitting, the determination of the coefficients requires the use
of a modified singular value decomposition (SVD) procedure in which the inverse
of an eigenvalue is set to zero if it is below a certain cutoff. A cutoff value of 10−8

has been previously determined [14] to be acceptable for the molecules which will
be under study. In addition to the SVD approach, we have also implemented noise
reduction techniques for the fitting procedure as this method can produces numerical
instabilities (noise) when the number of basis functions starts to grow and when
higher angular momentum are used (these instabilities are also present when us-
ing only s-type spherical [14] functions albeit to a lower extent). Several strategies
have been implemented [15]. Among them, we used the the Tikhonov regularization
formalism and a damped Coulomb operator Ô = erfc(βr)/r procedure in order
to localize the integrals to increase the calculation speed. Alternatively to the DF
procedure, it is possible to perform such a fit using density and electrostatic grids
[16]. That way, the ab initio calculated properties (density, electrostatic potential,
and/or electric field) are fitted via a linear or nonlinear-least-squares procedure to the
auxiliary basis sets (ABS). Neglecting the core contributions allows to perform more
robust fit of the coefficients compared to the numerical grids and allows to reduce
the number of functions and so the computational cost.

Using fitted densities expressed in a linear combination of Gaussian functions
has the advantage that that the choice of Gaussian functions auxiliary basis set is
not be restricted to Cartesian Gaussians. To use higher order angular momenta, nor-
malized Hermite Gaussian functions can be preferred [2, 15, 16]. Indeed, the use
of Hermite Gaussians in integral evaluation improves efficiency by the use of the
McMurchie-Davidson (McD) recursion [57] since the expensive Cartesian-Hermite
transformation is avoided. Obtaining the Hermite expansion coefficients from the
fitted Cartesian coefficients is straightforward since Hermite polynomials form a ba-
sis for the linear space of polynomials. Moreover, Hermite Gaussians have a simple
relation to elements of the Cartesian multipole tensor and can be used to multipoles
distributed at the expansion sites. This smooth connection leads to a continuous
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electrostatic model that can be used directly into second generation APMM such
as SIBFA. It is important to note that unlike conventional multipole expansions,
the spherical multipole expansion obtained from Hermite Gaussians has an intrinsic
finite order, namely, the highest angular momentum in the ABS. This connection
between multipoles and Hermite densities has its importance as, unlike s-type func-
tions (l = 0), fitting coefficients with l > 0 (sp, spd . . .) are not invariant by rotation.
These coefficients must be transformed for each molecular fragment orientation in
order to compute interaction energies. Such a transformation can be achieved [15]
by defining both a global orthogonal coordinate system frame and a local orthogonal
coordinate frame for each fragment fitting site.

6.3.2.2. Computing Integrals for Molecular Mechanics

The GEM force field follows exactly the SIBFA energy scheme. However, once com-
puted, the auxiliary coefficients can be directly used to compute integrals. That way,
the evaluation of the electrostatic interaction can virtually be exact for an perfect fit
of the density as the three terms of the coulomb energy, namely the nucleus–nucleus
repulsion, electron–nucleus attraction and electron–electron repulsion, through the
use of ρ̃ [2, 14–16, 58].

Ecoulomb = Z A Z B

rAB
−
∫

Z Aρ̃
B(rB)

rAB
dr −

∫
Z B ρ̃

A(rA)

rAB
dr +

∫
ρ̃A(rA)ρ̃

B(rB)

rAB
dr

(6-49)
To complete the first order terms, the exchange–repulsion energy can be evaluated

through an overlap model [14, 59] as:

Eexch/rep ≈ KSρ (6-50)

Where:

Sρ =
∫
ρa(r)ρb(r)dr ≈

∫
ρ̃a(r)ρ̃b(r)dr

As electric fields and potential of molecules can be generated upon distributed ρ̃,
the second order energies schemes of the SIBFA approach can be directly fueled by
the density fitted coefficients. To conclude, an important asset of the GEM approach
is the possibility of generating a general framework to perform Periodic Boundary
Conditions (PBC) simulations. Indeed, such process can be used for second gener-
ation APMM such as SIBFA since PBC methodology has been shown to be a key
issue in polarizable molecular dynamics with the efficient PBC implementation [60]
of the multipole based AMOEBA force field [61].
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6.3.2.3. Using Periodic Boundary Conditions to Increase Computational
Efficiency

In this section we describe the methods to extend Ewald sum methodologies to ac-
celerate the calculation of the intermolecular interactions using PBC. For simplic-
ity, we begin with a generalization of Ewald sums to interacting spherical Hermite
Gaussians (e.g. GEM-0 [14]). This is followed by the extension to arbitrary angular
momentum. Finally, we describe the implementation of methods to speed up both
the direct an reciprocal terms in the Ewald sum [62].

N.1 Spherical charge densities
To begin let U denote a unit cell such that it contains the set of points r with asso-
ciated fractional coordinates s1, s2, s3 satisfying −1/2 ≤ si ≤ +1/2, i = 1, 2, 3.
Then the idealized infinite crystal C is generated by the union of all periodic trans-
lations Un of U , using the set of general lattice vectors n. For the Ewald sum to be
convergent, extra conditions need to be imposed. To that end, consider a large but
finite crystal, i.e., let P denote a closed, bounded region in space, centered at the
origin (e.g., sphere, cube, etc.). For a positive integer K , let �(P, K ) denote the set
of lattice vectors such that |n|/K is in P . The Coulomb interaction of a spherical
Gaussian charge distribution ρ1 in a unit cell U0 centered at point R1 ∈ U0 with an
exponent α1, i.e. ρ1 = (α1/π)

3/2 exp(−α1(r − R1)), interacting with a second nor-
malized Gaussian charge distribution ρ2 centered at point R2 ∈ U0 with exponent α2
together with all images in Un for n ∈ �(P, K ) centered at R+n can be shown to be:

E12 =
∑

n∈�(P,K )

erfc(μ12α0 |R12 − n|)− erfc(μ12|R12 − n|)
|R12 − n|

+ 1

πV

∑

m 
=0

exp(−π2m2/μ12α0)

m2
exp(−2πi · (R12))

− π

μ12α0

+ 1

π
HP,K (R12)+ ε(K ),

(6-51)

where the first term corresponds to the direct part of the Ewald sum, the second to
the reciprocal part, HP,K (R12) is the surface term which depends on the dipole of
the unit cell (D), ε(K ) denotes a quantity that converges to 0 as K → ∞, m denotes
the reciprocal lattice vectors, 1/μ12θ = 1/α1 + 1/α2 + 1/α0, 1/μ12 = 1/α1 + 1/α2
and α0 is the Ewald exponent [62].

Equation (6-51) can be generalized to calculate the energy EP,K of U interacting
with the entire crystal P . Let ρ1 . . . ρN be normalized spherical Gaussian charge
distributions (e.g. GEM-0) centered at {R1 . . .RN } = R{N } ∈ U , and let q1 + . . .+
qN = 0 (neutral unit cell). Then the energy of the central unit cell U0 within a large
spherical crystal, due to the interactions of the Gaussian charge distributions qiρi

with each other and all periodic images within the crystal is given by



164 G.A. Cisneros et al.

ES,K (R{N }) = 1

2

′∑

n

N∑

i, j=1

qi q j

⎧
⎨

⎩
erfc(μ1/2

i jα0
|Ri j − n|)− erfc(μ1/2

i j |Ri j − n|)
|Ri j − n|

⎫
⎬

⎭

+ 1

2πV

∑

m 
=0

N∑

i, j=1

qi q j
exp(−π2m2/μi jα0)

m2
exp(−2π im · (Ri j ))

− π

2V

N∑

i, j=1

qi q j

μi jα0

−
N∑

i=1

q2
i

(μi iα0

π

)1/2 + 2πD2

3V
+ ε(K ),

(6-52)
where Ri j = Ri − R j and D = q1R1 + . . .+ qN RN is the unit cell dipole.

In order to be able to calculate the reciprocal contribution in Eq. (6-52) it is
necessary to grid the Gaussian densities. However, for large exponents (compact
Gaussians) this can become intractable. To overcome this problem, the first GEM
implementation relied on a method inspired by Fusti-Molnar and Pulay [63]. In this
method, the individual Gaussian charge densities are classified into compact and
diffuse Hermite Gaussian functions for a given α0. Thus, all Hermites with an ex-
ponent αi ≥ α0 are considered compact, and the rest are considered diffuse. In this
way, the interaction energy expressions may be re-expressed in order to calculate the
contributions involving diffuse Hermites completely in reciprocal space [64].

This method was subsequently improved by noting that the α0 in μi jα0 can be
different for each pair i j [15]. In this way, the Hermite charge distributions qiρi are
separated into compact and diffuse sets based on their exponents αi . Subsequently, α0
is chosen to be infinite for i j pairs where at least one of the two Gaussians is diffuse.
This ensures that all pairs involving diffuse Hermites are evaluated in reciprocal
space. For all compact i j pairs, α0 is chosen so that μi jα0 is constant, that is, given
β > 0, a Gaussian distribution qiρi is classified as compact if αi ≥ 2β (C set)
and diffuse otherwise (D set). Then, for i, j ∈ C , choose α0 so that 1/μi jα0 =
1/αi + 1/α j + 1/θ = 1/β. Otherwise, α0 is set to infinity. From this, the Coulomb
energy of the spherical unit cell can be re-expressed as:

ES,K (RN ) = 1

2

∑

n

′ ∑

(i, j)∈C×C

qi q j

{
erfc(β1/2|Ri j − n|)− erfc(μ12

i j |Ri j − n|)
|Ri j − n|

}

+ 1

2πV

∑

m 
=0

N∑

(i, j)∈C×C

qi q j
exp(−π2m2/β)

m2
exp(−2π im · (Ri j ))

+ 1

2πV

∑

m 
=0

N∑

(i, j)/∈C×C

qi q j
exp(−π2m2/μi j )

m2
exp(−2π im · (Ri j ))

− π

2V

N∑

(i, j)/∈C×C

qi q j

(
1

β
+ 1

αi
+ 1

α j

)
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−
N∑

i∈C

q2
i

(
β

π

)1/2

−
N∑

i /∈C

q2
i

(αi

π

)1/2

+ 2πD2

3V
+ ε(K ),

(6-53)

N.2 Higher angular momentum charge densities
In the case of GEM, the auxiliary bases employed for the fitting of the molecu-
lar fragment include higher angular momentum Gaussians. In this case, Eq. (6-53)
can be extended to account for the higher order Gaussians. As explained above,
the fitted densities are expanded in a linear combination of Hermite Gaussians
�tuv(r, α,R). Here, the Gaussian charge distribution is given by ρi (r,Ri ,∝) =

L∑
l=1

∑
tuv

ci,l,tuv�tuv(r, αl ,Ri ), where ci,l,tuv are the Hermite coefficients, and L denotes

the different exponents in the ABS on center i . Based on this, the Coulomb energy
of the total density within the spherical crystal is given by

ES,K (ρ
{N }) = 1

2

∑

n

′
N∑

i=1

∑

li ∈C

∑

ti uivi

ci,li ,ti uivi

N∑

j=1

∑

l j ∈C

∑

t j u jv j

(−1)(t j +u j +v j )c j,l j ,t j u jv j

×
(

∂

∂Rijx

)ti +t j
(

∂

∂Rijy

)ui +u j
(

∂

∂Rijz

)vi +v j

×
⎧
⎨

⎩
erfc(β1/2|Ri j − n|)− erfc(μ1/2

li l j
|Ri j − n|)

|Ri j − n|

⎫
⎬

⎭

+ 1

2πV

∑

m 
=0

1

m2
exp(−π2m2/2β)

N∑

l1∈C

Sl1(m)

× exp(−π2m2/2β)

N∑

l2∈C

Sl2(−m)

+ 1

2πV

∑

m 
=0

1

m2

N∑

(l1,l2)/∈C×C

exp(−π2m2/αl1)

× exp(−π2m2/αl2)Sl1(m)Sl2(−m)

− π

2V

N∑

l1∈C

∑

l2∈C

N∑

i=1

N∑

j=1

ci,l1,000c j,l2,000

(
1

β
− 1

αl1
− 1

αl2

)

−
N∑

i=1

Eself (ρi )+ 2πD2

3V
+ ε(K ), (6-54)
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where the structure factors Sl(m) are given by

Sl (m) =
N∑

i=1

∑

tuv

ci,l,tuv

(
∂

∂Ri j x

)ti +t j
(

∂

∂Ri j y

)ui +u j
(

∂

∂Ri j z

)νi +ν j

exp(−2π im · (Ri ))

(6-55)

Eself (ρi ) is given by

− lim
R→0

∑

t1u1v1

∑

t2u2v2

(−1)(t j +u j +v j )c j,l j ,t j u jv j

×
(
∂

∂Rx

)ti +t j
(
∂

∂Ry

)ui +u j
(
∂

∂Rz

)vi +v j

×
⎧
⎨

⎩
∑

(l1,l2)∈C×C

ci,l1,t1u1v1 ci,l2,t2u2v2

erfc(β1/2|R|)
|R| (6-56)

−
∑

(l1,l2)/∈C×C

ci,l1,t1u1v1ci,l2,t2u2v2

erfc(μ1/2
12 |R|)

|R|

⎫
⎬

⎭

where, similar to the previous section above, 1/μ12 = 1/αl1 + 1/αl2 and D is the
unit cell dipole [62].

N.2 Computational speedup for the direct and reciprocal sums
Computational speedups can be obtained for both the direct and reciprocal contribu-
tions. In the direct space sum, the issue is the efficient evaluation of the erfc function.
One method proposed by Sagui et al. [64] relies on the McMurchie-Davidson [57]
recursion to calculate the required erfc and higher derivatives for the multipoles.
This same approach has been used by the authors for GEM [15]. This approach has
been shown to be applicable not only for the Coulomb operator but to other types of
operators such as overlap [15, 62].

In the case of the reciprocal sum, two methods have been implemented, smooth
particle mesh Ewald (SPME) [65] and fast Fourier Poisson (FFP) [66]. SPME is
based on the realization that the complex exponential in the structure factors can be
approximated by a well behaved function with continuous derivatives. For exam-
ple, in the case of Hermite charge distributions, the structure factor can be approxi-
mated by
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Sl(m) ≈ λ(z1)λ(z2)λ(z3)

M1
2∑

k1=− M1
2 +1

M2
2∑

k2=− M2
2 +1

M3
2∑

k3=− M3
2 +1

N∑

i=1

∑

tuv

di,l,tuv

×
∞∑

l1=−∞

(
∂

∂w1 j

)t

B(w1i − k1 − l1 M1)

×
∞∑

l2=−∞

(
∂

∂w2i

)u

B(w2i − k2 − l2 M2)

×
∞∑

l3=−∞

(
∂

∂w3i

)v
B(w3i − k3 − l3 M3)

× exp

(
2π i

(
m1k1

M1
+ m2k2

M2
+ m3k3

M3

))

(6-57)

where di,l,tuv are the transformed Hermite coefficients obtained from ci,l,tuv by
change of variable and B(w) are B-splines [15]. Equation (6-57) is the approxi-
mation to Sl(m) as a three dimensional discrete Fourier transform (3DFFT) times
λ(z1)λ(z2)λ(z3). If the function B(w) has finite support, then the structure factors
can be calculated in O(N(log(N))) time.

The FFP method relies on the fact that the structure factors can be approximated
by rewriting the reciprocal sum such that the structure factor is re-expressed as the

3DFFT evaluated at m of a Gaussian density ρ(r) =
N∑

i=1
qiρ2α0(r− ri ) where ρ2α0 is

a normalized Gaussian with exponent 2α0. This is very similar to the FFT methods
used to accelerate structure factor and density map calculations in macromolecular
structure determinations.

The efficiency of the methods outlined above has been tested by calculating the
intermolecular Coulomb energies and forces for a series of water boxes (64, 128, 256,
512 and 1024) under periodic boundary conditions [15, 62]. The electron density
of each monomer is expanded on five sites (atomic positions and bond mid-points)
using two standard ABSs, A2 and P1.These sets were used to fit QM density of
a single water molecule obtained at the B3LYP/6-31G∗ level. We have previously
shown that the A1 fitted density has an 8% RMS force error with respect to the
corresponding ab initio results. In the case of P1, this error is reduced to around
2% [15, 16]. Table 6-1 shows the results for the 5 water boxes using both ABSs
(Table 6-7).

6.4. CONCLUSION

As we have seen, Anisotropic Polarizable Molecular Mechanics (APMM) proce-
dures such as SIBFA or GEM are more complex than usual classical approaches.
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Table 6-7. Timing (in seconds) of the calculated water boxes using full Ewald, PME and FFP for two
different accuracies. All calculations were performed on a single 3.g GHz Xeon processora

RMS force = 10−3

A1 P1

Ewald PME FFP Ewald PME FFP

64 0.365 0.106 0.142 2.321 0.310 0.399
128 1.336 0.218 0.271 7.706 0.591 0.832
256 5.239 0.387 0.528 35.178 1.186 1.920
512 17.881 0.837 1.100 119.863 2.549 3.825
1024 71.513 1.701 2.236 486.384 4.953 6.890

RMS force = 10−4

A1 P1

Ewald PME FFP Ewald PME FFP

64 0.520 0.144 0.274 3.858 0.478 0.688
128 1.869 0.287 0.380 11.056 0.923 1.576
256 7.256 0.517 0.846 49.107 1.805 2.736
512 25.511 1.104 1.534 183.487 3.794 5.684
1024 108.158 2.249 3.152 714.644 6.947 11.307

a Additional speedups can be gained by reducing the size of the mesh for the sampling of the Gaussians
by using the Gaussian split Ewald approach [67].

However, their parametrization is performed upon first principle energy decomposi-
tion schemes therefore lies on solid ground as any physical ingredients of the inter-
action can be added. We have seen that despite their variety, EDA schemes present
significant convergence and can be easy used to calibrate MM approaches, especially
as liner scaling techniques will allow performing large reference computations. In
addition, methods able to unravel local electrostatic properties such as the ELF based
DEMEP approach should help force field developers to build more realistic models.
To conclude, we have seen that despite their different formulation, SIBFA and GEM
share a common philosophy. That way, the GEM continuous electrostatic model will
be used to replace SIBFA’s distributed multipoles to produce a multiscale SIBFA-
GEM approach. It will use the newly developed density based Periodic boundary
conditions techniques giving access to an N.log(N) evaluation of integrals, a key
issue to perform fast and accurate polarizable molecular dynamics simulations. As
perspectives, it is important to point out that such APMM approaches should clearly
be an asset for hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) compu-
tations [2, 68, 69] as they embody short-range electrostatics and full induction. They
will also help improving classical force fields by performing higher level reference
calculations on relevant system [69].
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