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fields combining GEM with polarizable force fields. GEM* com-

bines the Coulomb and exchange–repulsion terms from GEM with

the polarization, van der Waals (modified) and bonded terms from

AMOEBA. We have also introduced a multi–scale implementation

denoted S/G–1 that combines GEM and SIBFA demonstrating the

advantage of the incorporation of the electron density force field

when applied to the description of metals in biomolecular systems.

Overall, the GEM framework and its hybrid approaches offer a new

strategy for molecular dynamics with enhanced accuracy at a cost

that will enable the possibility of adequate sampling.

1.2 Introduction

The use of classical potentials for simulations of chemical and

biochemical systems with molecular dynamics has been a field

of intense research. Currently, it is possible to simulate systems

with millions of atoms and millisecond time scales [Schulten et al.

(2008); Shaw et al. (2010)]. With exa–scale computing, i.e. 1018

floating point operations per second (FLOPs), on the horizon it

is necessary to evaluate the performance of the current potentials.

Indeed, long–time biomolecular simulations have revealed some is-

sues already. For example Raval et al. carried out a study on 24

proteins (both homology models and experimental structures) used

in recent CASP competitions involving at least 100µs MD simula-

tions [Raval et al. (2012)]. For most systems, the structures drifted

away from the native state, even when starting from the experi-

mental structure. Although only two conventional force fields were

employed, the authors concluded that this is most likely a limita-

tion of the available point–charge force fields. As simulations on

these and longer scales grow more widespread with improvements

in computing power, node inter–connect, and graphical processing

unit (GPU) hardware [Stone et al. (2007)], the accuracy of these

classical potentials will be further tested.

In this context, there has been a recent impetus to develop

more accurate force fields. One of the main thrusts has been to im-

prove the description of the bonded interactions by including an-

harmonicity and of the non–bonded interactions by introducing ex-
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plicit polarization and a better description of the charge anisotropy

terms. Several force fields that employ distributed multipoles and

use explicit polarization (or are QM based using simpliefied MO

schemes) have been proposed including AMOEBA, SIBFA, EFP,

X–Pol, mDC and NEMO among others [Hermida-Ramón et al.

(2003); Gresh et al. (2007); Ponder et al. (2010); Day et al. (1996);

Xie and Gao (2007); Xie et al. (2009); Mills and Popelier (2012);

Popelier (2012); Giese et al. (2013); Babin et al. (2014); Giese et al.

(2014)]. The use of distributed multipoles results in an improved

description of the charge density anisotropy and provides more ac-

curate electrostatic interactions [Stone (2000); Price (1999); Pope-

lier (2000); Kosov and Popelier (2000); Popelier et al. (2001a);

Popelier and Kosov (2001); McDaniel and Schmidt (2014)]. How-

ever, distributed multipoles suffer from one drawback since they

cannot describe the overlap of charge density as two molecules get

close to each other. This is known as the penetration effect [Stone

(2000); Freitag et al. (2000)]. It is possible to reduce the penetra-

tion error by employing empirical damping functions [Kairys and

Jensen (1999); Freitag et al. (2000); Piquemal et al. (2003); Cis-

neros et al. (2008); Wang and Truhlar (2010); Stone (2011)]. It is

also possible to include this effect via the use of neural networks

[Handley and Popelier (2010)].

Another possibility to avoid the charge penetration and

anisotropy shortcomings is to use a continuous description of

the molecular charge density. Several methods that describe the

electronic distribution explicitly have been proposed [Wheatley

(2011); Gavezzotti (2002); Eckhardt and Gavezzotti (2007); Volkov

and Coppens (2004); Coppens and Volkov (2004); Paricaud et al.

(2005)]. We have introduced the Gaussian Electrostatic Model

(GEM) [Cisneros et al. (2005a); Piquemal et al. (2006a); Cisneros

et al. (2006b)]. GEM uses density fitting (DF) techniques [Boys

and Shavit (1959); Dunlap et al. (1979); Köster et al. (2002)] to

reproduce the molecular electronic density using Hermite Gaussian

auxiliary basis sets (ABSs). These fitted densities are employed to

calculate each intermolecular component as obtained from energy–

decomposition (EDA) prodecures. The reason for the use of EDA

methods for the parametrization of GEM is that it enables the

separation of each of the components of the intermolecular inter-
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actions. There are a variety of EDA approaches that can be em-

ployed including symmetry–adapted perturbation theory (SAPT),

Kitaura–Morokuma (KM), restricted variational space (RVS), con-

strained space orbital variations (CSOV), to name a few [Eisen-

schitz and London (1930); Hirshfelder (1967a,b); Murrel and Shaw

(1967); Kitaura and Morokuma (1976); Bagus et al. (1984); Stevens

and Fink (1987); Jeziorski et al. (1994); Glendening and Stre-

itwieser (1994); Glendening (1994); Mo et al. (2000); Heßelmann

et al. (2005); Piquemal et al. (2005); Khaliullin et al. (2006); Wu

et al. (2009); Lu et al. (2011)].

In this contribution we present the theory behind the GEM

method and recent advances and results on the application of two

hybrid GEM potentials. In section 1.3 we provide a brief review of

the analytical and numerical density fitting methods and it’s im-

plementation including the methods employed to control numerical

instabilities. This is followed by a review of the procedure to obtain

distributed site multipoles from the fitted Hermite coefficients in

section 1.4. Section 1.5 describes the extension of reciprocal space

methods for continuous densities. Section 1.6 describes the com-

plete form for GEM and a novel hybrid force field, GEM*, which

combines term from GEM and AMOEBA for MD simulations. Fi-

nally, section 1.7 describes the implementation and initial applica-

tions of a multi–scale program that combines GEM and SIBFA.

1.3 Density fitting methods

The use of ABSs for density fitting is a field of intense study. This

method relies on the use of auxiliary basis functions (ABS), gen-

erally Gaussians, to expand the molecular electron density

ρ̃(r) =
∑

k

c
k
Λ(r). (1.1)

For GEM the ABSs consist of Hermite Gaussians, Λtuv(r). The

expansion coefficients ck for the approximate density ρ̃ may be

obtained by minimizing Eq. 1.2 using some metric Ô [Dunlap et al.

(1979); Eichkorn et al. (1995); Köster (1996); Köster et al. (2002)].
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E
self

=< ρ(r)− ρ̃(r)|Ô|ρ(r) − ρ̃(r) > (1.2)

Several operators Ô can be employed including the overlap op-

erator Ô = 1, the Coulomb operator Ô = 1/r or the damped

Coulomb operator Ô = erfc(βr)/r [Jung et al. (2005)]. The min-

imization of Eq. 1.2 with respect to the expansion coefficients ck
leads to a linear system of equations:

∂E
self

∂c
l

= −
∑

µ,ν

Pµν < µν|Ô|l > +
∑

k

c
k
< k|Ô|l > (1.3)

The solution of Eq. 1.3 requires the inversion of a the ABS

matrix G =< k|Ô|l >. In principle this matrix should be positive

definite and symmetric. In practice however, this matrix is almost

singular and therefore the diagonalization to obtain its inverse must

be done with care. To this end we have explored analytical and

numerical procedures to obtain G and G−1.

1.3.1 Analytical Fitting

The analytical fitting procedure involves the explicit evaluation of

all the matrix elements of G and its subsequent inversion, which is

achieved by diagonalization.We have implemented several methods

for the diagonalization step. Initially we employed singular value

decomposition (SVD) [Press et al. (1992)] by setting the inverse of

the eigenvalue to zero if it is below a certain cutoff. However, this

method produces undesirable numerical instabilities (noise) when

the number of basis functions starts to grow as we and others

have discussed previously [Cisneros et al. (2005b); Podeszwa et al.

(2006)].

In the current implementation we employ the Tikhonov regu-

larization method [Press et al. (1992)]. This approach is similar to

the constrained density fitting algorithm of Misquitta and Stone

[Misquitta and Stone (2006)]. Here, the redundant basis set contri-

butions are penalized by minimizing Eself + λ
∑

k x
2
k
, resulting in

a more stable diagonalization procedure [Cisneros et al. (2006a)].

For problematic systems we also implemented the damped

Coulomb operator Ô = erfc(βr)/r proposed by Jung et al. [Jung
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et al. (2005)] to attenuate the near singular behavior due to long

range interactions present in G. In our studies we observed that

noise is still a problem for some systems. The noise in the fit is

known to arise due to the attempt of the ABSs to fit the density

at the nuclear cores [Cisneros et al. (2005b, 2006a)].

The use of Hermite Gaussians with angular moment greater

than 0 requires the rotation of the fitting coefficients. In GEM

this is addressed in a similar manner to multipolar force fields by

defining a global molecular frame and a reference (local) site frame

[Toukmaji et al. (2000); Sagui et al. (2004); Cisneros et al. (2006a)].

The use of Hermite Gaussians provides a straightforward solution

to the rotation since they are defined by partial derivatives of a

spherical Gaussian which can be taken either with respect to the

local (reference) frame or with respect to the global coordinates

[Cisneros et al. (2006a)]. Moreover, the rotation frames are the

same for the distributed multipoles.

1.3.2 Numerical fitting

As mentioned above, the numerical instabilities in the fit arise from

the attempt to fit the nuclear cores. Thus, if the density at the cores

is discarded then the fit should become more stable. This can be

achieved by using numerical grids to evaluate a given molecular

property and discarding points at and near the core. This can be

achieved by minimizing the following fitting function:

χ2 =
∑

i

W (ri) (y(ri)− ỹ(ri, ck))
2
, (1.4)

where y(ri) denotes the ab initio molecular property of interest at

point i and ỹ(ri, ck) is the same property evaluated with the kth

ABS element at the same point on the grid. Finally, W (r) is the

weighting function for the point on the grid, which can be defined

in several ways [Bayly et al. (1993); Hu et al. (2007)]. Hu et al

have proposed a weighting function that provides a smooth cutoff

near the cores and at long distance to avoid any discontinuities [Hu

et al. (2007)]:

W (ri) = exp[−σ(log ρpromol(r)− log ρref )
2], (1.5)
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where ρpromol is a reference promolecular atomic density, and σ and

ρref are adjustable parameters. It has been shown that the surface

for σ and ρref is relatively flat [Hu et al. (2007); Elking et al.

(2010)]. We have implemented a modified version of this weight-

ing function previously [Elking et al. (2010)]. The main differences

between the original Hu et al. weight and our implementation are

the re–optimization of the promolecular atomic electron densities

at the MP2/aug–cc–pVQZ level and the values for σ and ρref which

correspond to 0.42 and -7.0 respectively.

The minimization of Equation 1.5 leads to a linear system of

equations that can be expressed as: c− c0 = −H0,−1g0. As was the

case for the analytic DF, we employ Tikhonov regularization for

the inversion of the Hessian that arises for the linear–least–squares

procedure. In our initial implementation of numerical fitting we ex-

plored different molecular properties including electronic density,

molecular electrostatic potential (mESP), and the three compo-

nents of the electric field [Cisneros et al. (2007)]. All the properties

were gridded on rectangular grids. Subsequently we showed that

the use of spherical molecular grids based on the scheme proposed

by Becke [Becke (1988)] significantly reduce the number of fitting

points [Elking et al. (2010); Cisneros (2012)].

1.4 Distributed multipoles

In this subsection we present the methodology to obtain Carte-

sian point multipoles from the Hermite coefficients obtained in the

fitting procedure. In all our work we have purposefully employed

ABSs with a maximum angular momentum of 2, which results in

distributed multipoles only up to quadrupoles. This ensures that

the distributed multipoles obtained can be directly employed in

the AMOEBA force field. However, higher order multipoles can be

obtained if an ABS with higher angular momentum is used.

Briefly, we have expanded on the work by Challacombe et al.,

who have shown that Hermite Gaussians have a simple relation

to elements of the Cartesian multipole tensor [Challacombe et al.

(1996)]. Once the Hermite coefficients have been determined, they

may be employed to calculate point multipoles centered at the ex-
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pansion sites. Thus, if hc
tuv

represents the coefficient of a Hermite

Gaussian of order Λ
tuv

, then if this Hermite is normalized we have:

hc
000

∫

Λ
0
dr = hc

000
(1.6)

This guarantees that higher order multipole integrals will in-

tegrate to integer numbers, for example, for the dipole integral in

the z direction, dz:

hc
001

∫ ∫ ∫

zΛ
001

dxdydz = hc
001

∫

z
∂

∂S
z

Λ
0
dz

= −hc
001

∫

z
∂

∂z
Λ

0
dz = hc

001
(1.7)

For quadrupole and higher order integrals the same relation-

ships hold, although different cases need to be considered (see ref.

[Cisneros et al. (2006a)]). In practice, following Stone’s definition

[Stone (2000)], we have used traceless quadrupoles. Furthermore,

the use of GEM distributed multipoles (GEM–DM) for multipo-

lar force fields provides a straightforward way to determine the

penetration error in the site–site Coulomb interaction energy due

to the connection with the GEM Hermites. Thus, this connection

provides a natural way to generate damping functions to lessen the

penetration error [Piquemal et al. (2003); Cisneros et al. (2008)].

A further advantage of this approach to distributed multi-

poles is that, unlike some conventional multipole expansions [Stone

(2005); Popelier et al. (2001b)], the (spherical) multipole expansion

obtained from Hermite Gaussians in this way is intrinsically finite

of order t+ u+ v (i.e. the highest angular momentum in the ABS)

as shown in [Cisneros et al. (2006a)], similar to the multipoles ob-

tained by Volkov and Coppens [Volkov and Coppens (2004)].

1.5 Reciprocal space methods for integral evaluation

The use of molecular densities results in the need to compute a

large number of two center integrals for the intermolecular inter-

action. A significant computational speedup can be achieved by

using reciprocal space methods based on Ewald sums. In this way,
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the integrals are calculated in direct or reciprocal space depending

on the exponent of the Gaussian Hermites.

Here we describe how the Ewald formalism can be extended

to take into account the Gaussian distribution. Let U denote a

unit cell whose edges are given by the vectors a1, a2 and a3. An

idealized infinite crystal can be generated by all periodic transla-

tions n = n1a1 + n2a2 + n3a3 for all integer triples (n1, n2, n3),

with n1, n2, n3 not all zero. Now, consider a collection of N nor-

malized spherical Gaussian charge densities ρ1 . . . ρN (e.g. GEM–

0) centered at {R1 . . .RN} ∈ U with exponents αi, i.e. ρi(r) =

qi(αi/π)
3/2exp(−αi(r−Ri)

2), and let q1 + . . .+ qN = 0. Note that

N need not be limited only to atomic positions, e.g., GEM–0 in-

cludes sites on the oxygen lone pairs and the bisector line between

the two hydrogens [Piquemal et al. (2006a)]. The Coulomb energy

of the central unit cell within a large spherical crystal, due to the

interactions of the Gaussian charge distributions with each other

and all periodic images within the crystal can be calculated using

Ewald methods.

In particular, to determine the reciprocal part in the Ewald sum

it is necessary to grid the Gaussian densities. However, this can be-

come intractable for Gaussian functions with large exponents (com-

pact Gaussians). In the initial implementation the charge densities

were classified into compact or diffuse Hermite Gaussians based on

a given Ewald exponent β. Therefore, if the exponent of a given

Hermite was above the cutoff it was considered compact, and dif-

fuse (αi < β) otherwise. With this, the contributions involving

diffuse Hermites can be calculated in reciprocal space exclusively

[Cisneros et al. (2006b)].

This was later improved by the realization that the Ewald ex-

ponent, β may be different for each pair ij [Darden (2007)]. Thus,

β is chosen to be infinite for ij pairs where at least one of the Gaus-

sians is diffuse. In this way, all pairs that involve diffuse Hermites

are evaluated in reciprocal space. That is, given θ > 0 a Gaussian

distribution qiρi is classified as compact (i ∈ c) if αi ≥ 2θ and dif-

fuse (i ∈ d) otherwise. Subsequently, for i, j ∈ {c}, select β so that

1/θ = 1/αi + 1/αj + 1/β, otherwise β = ∞. In the case of GEM,

the fitted densities are expanded in a linear combination of Hermite

Gaussians Λtuv(r, α,R). Thus, the charge distribution is given by
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ρi(r, α,R) =
∑L

l=1

∑

tuv ci,l,tuvΛtuv(r, αl,Ri), where ci,l,tuv are the

Hermite coefficients and L denotes the different ABS exponents on

center i. With this, the Ewald expression becomes

E(ρ{N}) =
1

2

∑

n

′
N
∑

i=1

∑

li∈c

∑

tiuivi

ci,li,tiuivi

N
∑

j=1

∑

lj∈c

∑

tjujvj

(−1)(tj+uj+vj)cj,lj,tjujvj

×

(

∂

∂Rijx

)ti+tj ( ∂

∂Rijy

)ui+uj
(

∂

∂Rijz

)vi+vj

×







erfc(θ1/2|Rij − n|)− erfc(µ
1/2
lilj

|Rij − n|)

|Rij − n|







+
1

2πV

∑

m 6=0

1

m2
exp(−π2m2/2θ)

∑

l1∈c

Sl1(m)

×exp(−π2m2/2θ)
∑

l2∈c

Sl2(−m) (1.8)

+
1

2πV

∑

m 6=0

1

m2

N
∑

(l1,l2)/∈c×c

exp(−π2m2/αl1)

×exp(−π2m2/αl2)Sl1(m)Sl2(−m)

−
π

2V

N
∑

i=1

N
∑

j=1

∑

l1∈c

∑

l2∈c

ci,l1,000cj,l2,000

(

1

θ
−

1

αl1

−
1

αl2

)

−

N
∑

i=1

Eself (ρi) +
2πD2

3V
+ ε(K),

where the first term corresponds to the direct part of the Ewald

sum, the second and third terms to the reciprocal part, Rij = Ri−

Rj , the structure factors Sl(m) involve derivatives of the Fourier

exponential with respect to the Hermite centers, Eself (ρi) is the

correction due to the self energy of each Hermite interacting with

its replicate, the term involving the unit cell dipole D = q1R1+. . .+

qNRN is the surface term, ε(K) denotes a quantity that converges

to 0 as K −→ ∞, m denotes the reciprocal lattice vectors, and

1/µlilj = 1/αli + 1/αlj [Cisneros et al. (2006b); Darden (2007)]..
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Since the ABSs include Hermites with l > 0, the direct space

contributions can be efficiently evaluated by using the McMurchie-

Davidson (MD) recursion [McMurchie and Davidson (1978)]. This

recursion has been used to calculate the required erfc and higher

derivatives for multipole interactions [Sagui et al. (2004)]. This

approach was also employed for the Hermite Gaussians [Cisneros

et al. (2006b)], where it was shown that the MD recursion is ap-

plicable to other types of operators besides 1/r. For the reciprocal

sums three methods were implemented: full Ewald [Ewald (1921)],

sPME [Essmann et al. (1995)] and FFP [York and Yang (1994)].

The latter two methods rely on the use of fast fourier transforms to

approximate the structure factors that arise in the reciprocal term,

which results in the efficient evaluation of this term and has been

shown to scale as O(NlogN) for sPME [Essmann et al. (1995)].

1.6 The GEM and GEM* force fields

The initial implementation of the full GEM potential involved the

use of spherical type Hermites only, resulting in what was termed

GEM–0 [Piquemal et al. (2006b)]. This initial parametrization in-

cluded the terms described below.

1.6.1 The GEM functional form

The idea for GEM is to employ the fitted Hermite Gaussians to

evaluate each term in

ETotal = EGEM
Coulomb + EGEM

exch−rep

+EGEM
polarization + EGEM

charge−transfer, (1.9)

where the Coulomb term is given by
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EGEM
Coulomb =

∑

A>B

ZAZB

r
AB

+
∑

A>B

∫

ZAρ̃
B(r

B
)

r
AB

dr

+
∑

A>B

∫

ZB ρ̃
A(r

A
)

r
AB

dr

+
∑

A>B

∫

ρ̃A(r
A
)ρ̃B(r

B
)

r
AB

dr. (1.10)

The exchange–repulsion term is calculated by means of the

charge density overlap following the Wheatley–Price overlap model

[Wheatley and Price (1990); Domene et al. (2001)]:

EGEM
exch−rep = K

∑

A>B

∫

ρ̃A(r
A
)ρ̃B(r

B
). (1.11)

The polarization term is approximated by the use of dipole

polarizabilities, which yield a very good results for the polarization

energies (if the electric fields are not large) [Böttcher (1993)]. To

this end, the electric fields are calculated with the fitted densities

and interacted with distributed dipolar polarizabilidies with the

Garmer and Steven’s approach [Day et al. (1996)]

EGEM
polarization =

1

2

xyz
∑

j

∆µ(i)(γE0(j)), (1.12)

where ∆µ(i) = α(i)
∑xyz

j E(∆µ(i)) + (γE0(j)), and γ is a

scaling factor for the permanent electric fields [Piquemal et al.

(2006b)].

Finally, the charge transfer term is evaluated using the semiem-

pirical formalism implemented in the SIBFA force field [Gresh et al.

(1979); Piquemal et al. (2007)]:

EGEM
charge−transfer = 2C

∑

Lα

(I∗αβ)
2

∆E∗
αβ

, (1.13)

where C = 3.5 is a constant parametrized to reproduce the

value of the charge–transfer energy (obtained with CSOV) for the

canonical water dimer at equilibrium distance. I∗αβ is a function
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of the overlap between the localized molecular orbital (LMO) for

the donor lone pair and antibonding LMO of the acceptor, as well

as the electrostatic potential on site A arising from all other sites

obtained with the GEM densities. ∆E∗
αβ is a difference between the

ionization potential of A and the electron affinity of the acceptor

site.

In our initial implementations of GEM–0 and GEM we have not

introduced an explicit term for the dispersion interactions. This is

because these force fields have been originally parametrized using

the CSOV method at the DFT level, which, by definition, does

not include a dispersion contribution. However, it is possible to

include this term in a similar way to the SIBFA potential [Gresh

et al. (1979); Piquemal et al. (2007)].

1.6.2 GEM*: molecular dynamics with fitted densities

After our implementation of GEM–0, we extended the Coulomb

and exchange–repulsion terms to enable the use or arbitrary angu-

lar momentum Hermites [Cisneros et al. (2006b)]. However, both

implementations only enabled energy calculations. In order to carry

out MD simulations it is necessary to evaluate the associated forces

efficiently. Until recently, it was impractical to do this since the

analitical form of the force for the charge-transfer term was un-

available.

To enable the performance of MD simulations, a hybrid force

field called GEM* was developed. GEM* combines the Coulomb

and exchange–repulsion terms from GEM with the polarization,

van der Waals (modified) and bonded terms from AMOEBA. The

functional form for GEM* is thus:

ETotal = EGEM
Coulomb + EGEM

exch−rep + EAMOEBA
polarization

+EAMOEBA
V dW + EAMOEBA

bonded . (1.14)

The Coulomb and exchange–repulsion terms for GEM* are eval-

uated with the same expressions as for GEM (Eqns. 1.10 and 1.11).

Since GEM* includes an explicit term for exchange, it was neces-

sary to modify the original van der Waals function implemented
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in AMOEBA. In this case, we have modified the buffered Halgren

function (modHalgren) by removing the repulsive term as follows:

EmodHalgren = −ǫij

[

1.07R∗
ij

(Rij + 0.07R∗
ij)

]7

. (1.15)

The polarization and bonded terms are the same as those in the

original AMOEBA implementation [Ren and Ponder (2003)]. The

only difference in the polarization is that the permanent electric

fields for the calculation of the induced dipoles are calcualted with

the distributed multipoles obtained from the fitted Hermites for

consistency between the Coulomb and polarization terms [Cisneros

(2012)].

The initial implementation of GEM* was tested by fitting pa-

rameters for a water potential [Duke et al. (2014)]. These param-

eters were compared to reference ab initio values for total inter-

molecular interactions corrected for basis set superposition error

via the counterpoise correction . The reference data was calcu-

lated at the MP2(full)/aug–cc–pVTZ level to match the original

AMOEBA parametrization [Ren and Ponder (2003, 2002); Ponder

et al. (2010); Ren et al. (2011)]. The molecular density used to ob-

tain the fitting coefficients for GEM* was calculated at the same

level of theory as above for a water molecule at the AMOEBA

equilibrium geometry.

Three parametrizations were investigated, termed models 1–

3 in the discussion below. The difference among the three models

involves the use of different ABSs, A1 or A2 [Andzelm andWimmer

(1992); Godbout and Andzelm (1999)], and/or the dataset of water

oligomers used for the parametrization. Model 1 was fitted using

the A2 ABS to reproduce intermolecular interaction energies for

the canonical water dimer (see Figure 1.1.), several random dimers,

and selected water clusters from [Temelso et al. (2011)]. Models 2

and 3 were parametrized to reproduce intermolecular energies for

the canonical water dimer only using the A2 (model 2) and A1

(model 3) ABSs. All calculations for GEM* were performed with a

modified pmemd version in the AMOEBA suite of programs [Case

et al. (2005)].
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The comparison of the QM reference for energies and forces cal-

culated with GEM* models 2 and 3 showed that both models re-

produce the total intermolecular interactions well. However, model

3 deviated in the forces due to the limited accuracy because of the

small number of Gaussians in the ABS employed for model 3. In

addition, both models were observed to produce significant errors

in the intermolecular energies for random dimers and binding en-

ergies for different oligomers. These errors are due to the improper

description of these two models to describe interactions between H

atoms since both models were fitted only to the canonical water

dimer.

Conversely, all results for model 1 showed good agreement with

the QM references for dimers as well as larger clusters. The results

show that a better parametrization can be obtained once a slightly

larger data set that included different dimer orientations was con-

sidered. Recently Babin et al. have developed a novel water model

parametrized only from QM data [Babin et al. (2012, 2013)] using

results from 40000 dimers calculated at the CCSD/CBS level.

The performance of GEM* was tested by performing 100 MD

steps in the NVE ensemble with a series of water boxes of in-

creasing size (216, 512, 1024, 2048 and 4096 molecules). All MD

calculations were done on a single Xeon X5550 CPU with 12 GB

of memory at 300 K with an 8 Å cutoff for Van der Waals in-

teractions, using the Beeman integrator, a 1 fs time step and a

dipole tolerance for the SCF convergence of 10−6. The calculation

of the polarization with the induced dipoles was performed using

the PME method with a B–spline order of 5 and a grid–size of

24. During the parametrization and testing, it was realized that

the overlap integrals for both sets of ABSs employed (A1 and A2)

tend to 0 at distances greater than 5 Å. Therefore, although it is

also possible to perform the Overlap integrals in reciprocal space as

described in [Cisneros et al. (2006b); Darden (2007)], the exchange

integrals were evaluated only in direct space with the same cutoff

as the van der Waals interactions (8 Å), or with a reduced cutoff

of 6 Å.

Timings for all the tested systems are shown in Figure 1.2.. For

comparison we performed the calculations for all cases with the

Coulomb integrals evaluated completely in direct space (all Gaus-
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sians set as compact), or by placing two Gaussians in the diffuse set

and employing sPME or FFP with two different exchange cutoffs.

As discussed previously, the evaluation of the Hermite Gaussians in

reciprocal space requires significantly larger grids and B–spline or-

ders [Cisneros et al. (2006b); Darden (2007)]. For the three smallest

boxes the calculations are faster when all the integrals are evalu-

ated in direct space. This is due to the large overhead for the FFTs

due to the fine grids required for accurate evaluation of the ener-

gies and forces in reciprocal space. As the system grows in size,

the calculation becomes faster by using the compact/diffuse den-

sity split method with PME. The smallest water box comprising

216 molecules takes 100 s for the evaluation of the 100 energy/force

calculations including the evaluation of Coulomb and overlap inte-

grals for 15120 basis functions. That is, our code is able to evaluate

all Coulomb and overlap integrals for 15120 basis functions for a

single step in 1 s. For the 4096 box, comprising 286720 basis func-

tions, when the exchange cutoff is reduced to 6 Åthe time is 2363

s. Moreover, after an initial optimization of the code, this time is

reduced to 789 s. This is only 4 times slower than the same 4096

system calculated with AMOEBA on the same CPU. We expect

more gains in performance as the code is further optimized.

1.7 Combining SIBFA and GEM: S/G–1

In this initial implementation the direct coupling between GEM

and SIBFA has been only performed at the induction level (po-

larization and charge transfer energies) in the spirit of QM/MM

techniques [Chaudret et al. (2014)]. Indeed, the GEM equations

for exchange–repulsion involve overlap integrals between densities

of both interacting fragments. Thus a mixed S/G–1 scheme is not

possible for this term since the overlap between a GEM density

and SIBFA’s multipoles would be zero. Therefore, in the present

S/G–1 implementation, the electrostatic, exchange–repulsion and

dispersion energies are computed at the sole SIBFA level and in-

clude SIBFA’s short range corrections. In a forthcoming work the

full multiscale implementation including full Gaussian electrostat-

ics first order energy will be reported.
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Therefore in the first implementation, GEM is only used to

compute the second–order polarization and charge–transfer con-

tributions between the cation and its bound ligands. Finally, the

dispersion equations are the same for both methods, as they do

not depend on electric fields or potentials. As a proof of concept,

we limited ourselves to a Hartree–Fock level parametrization (no

dispersion) of the method.

Briefly, within S/G–1, the evaluation of the polarization and

charge–transfer energies use the same formalism. The differences

between the two levels of computations are linked to the level of

calculation of electric fields and potentials (i.e. using electronic den-

sities for GEM or using distributed multipoles for SIBFA). Indeed,

differences between GEM and SIBFA electric fields and electro-

static potentials can arise at short distances since GEM is identical

to an ab initio field. Both procedures converge to the same solu-

tions upon increasing the distances when the multipolar approx-

imation starts to be valid as GEM densities act as a continuous

electrostatic model. Therefore, in a similar spirit as in QM/MM

approaches, specific fragments can be defined so as to be handled

with either the GEM density or the SIBFA multipoles. For the first

implementation, the use of GEM densities were restricted to the

metal cations whereas the rest of molecules were described using

SIBFA.

In order to try to include the different previously discussed

physical effects within a MM scheme, we show here some results

focusing on the polarization contribution in the case of the Ca(II)-

H2O complex.

Figure 1.3. displays four curves, namely the reference ab initio

CSOV polarization contribution, the undamped full GEM polar-

ization energy, the full GEM + damping approach, and results ob-

tained upon computing the polarization energy obtained with the

exact ab initio undamped field values extracted from a quantum

mechanical Gaussian 09 computation. The damping procedure is

identical to the one used by SIBFA and is detailed in the technical

appendix in ref. [Chaudret et al. (2014)].

It is important to point out that the GEM fields alone, in spite

of their quasi-perfect match with their ab initio counterparts, do

not provide a good reproduction of ab initio results at short-range:
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a damping of the fields is required to gain accuracy at very short

distances. Such conclusions are confirmed as our results obtained

from undamped exact ab initio fields (i.e. computed using the orig-

inal molecular orbitals) are basically identical to the undamped

GEM results (see Figure I). This clearly shows that inclusion of

short-range quantum effects, inherently present within QM and

GEM fields, is not sufficient to reproduce the true polarization

energy. This is because the final ab initio CSOV polarization en-

ergy embodies both penetration and exchange-polarization effects.

The first quantity is present in GEM (as in QM), however, the

exchange-polarization arises from the required orthogonalization

of molecular orbitals of both Ca(II) and H2O fragments within the

constrained self-consistent field procedure. Therefore, since GEM

does not include this repulsive effect, the computed polarization

energy is overestimated. A straightforward solution to the prob-

lem is to apply the exact same field damping procedure that is

used for the SIBFA polarization contribution. As can be sene from

Figure I, the GEM+damping approach accurately reproduces the

CSOV reference by selectively including the different effects.

The initial implementation of the S/G–1 method has been de-

veloped to describe metal cations in a ligand environment. To this

end, S/G–1 has been parametrized to model Zn(II) and Hg(II)

cations. The Zn(II) parametrization was performed on a series

of representative mono–ligand complexes and subsequently em-

ployed to calculate the polarization and charge–transfer energies

for a series of multi–valent complexes as shown in Figure 1.4..

S/G–1 matches the anti–cooperative behavior of the polarization

and charge–transfer (at the RVS level) energies. For example,

for [Zn(H2O)4/2]
2+ the charge–transfer energy from S/G–1(RVS)

corresponds to -26.8(-28.7) kcal/mol. Correspondingly, the polar-

ization energy for S/G–1 is -103.8 kcal/mol compared to -101.7

kcal/mol for its RVS counterpart.

As a test of the applicability of S/G–1 to large systems, we

applied this method to a Zn(II) dependent system recently stud-

ied using the SIBFA procedure. To this end, the Zn(II)–alcohol

dehydrogenase (ADH) active site [de Courcy et al. (2008)] was cal-

culated, GEM was used to model the Zn(II) cation and the remain-

ing system was treated with SIBFA. As can be seen in Figure 1.4.,
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S/G–1 successfully reproduced the RVS values for a complicated

hetero–polyligated complex [Chaudret et al. (2014)].

To further test the performance of S/G–1 to model heavy met-

als where relativistic and correlation effects are important , a cali-

bration for Hg(II) was performed. The cation polarization energy

requires two components. The first arises from the cation dipolar

polarizability and depends on the electrostatic field that the cation

is subjected to. The second component arises from the quadrupo-

lar polarizability and depends upon the field gradient [Bucking-

ham (1975)]. The magnitude of the second component was found

to be important in the case of some metal cations, such as Cu(I)

and Hg(II), and this component had to be explicitly formulated

in SIBFA [Gresh et al. (2002)]. However, although the reference

quantum dipolar polarizability for Hg(II) can be easily obtained,

its quadrupolar polarizability could not be derived by QM calcu-

lations using a small core pseudopotential. Therefore we resorted

to theo available Cu(I) [Buckingham (1975)] value as a starting

point. The values of the polarization energy for Hg(II) were ob-

tained from RVS calculations on the [Hg(H2O)2]
2+ complex, with

Hg(II) equidistant from the two water molecules. In this complex,

the field undergone by Hg(II) is zero, but the gradient is non–zero.

Subsequently, the Cu(I) quadrupolar polarizability was employed

as a starting point for the Hg(II) and scaled to match the polar-

ization energy of the complex.

Figure 1.5. shows the second–order polarization and charge–

transfer energies and the total intermolecular interaction energies

for a di–aquo mercury complex at different distances. Except at

very short distances, the error between SIBFA/GEM with respect

to the ab initio calculations are very small. The S/G–1 charge–

transfer values are very close to one another. The main differences

arise from the polarization contribution. Moreover, the use of the

GEM densities for the calculation of the second–order components

results in better agreement at short range with respect to RVS

than the original SIBFA method. The close agreement found for

the monoligated Hg(II) complex used for the parametrization is

conserved in the polyligated complexes. This shows that the non-

additivity of both the polarization and charge–transfer components
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can be reproduced with S/G–1 for Hg(II) as it has been demon-

strated for Zn(II).

1.8 Conclusion and Perspective

The present contribution reports the development of the ab ini-

tio GEM force field that uses Hermite Gaussian electrostatics to

include short–range quantum mechanical effects into molecular me-

chanics. It also details the GEM* and S/G-1 approaches that blend

together GEM with the AMOEBA and SIBFA polarizable poten-

tials, both of which rely on distributed multipoles. As the capabil-

ity to achieve high accuracy on the interaction energies is demon-

strated, first application to molecular dynamics have been detailed

as the potentialities of the GEM densities to accurately treat dif-

ficult systems such as metalloproteins have been exposed. In term

of perspectives, all models should be able to be used directly in

MD simulations as all the required gradients were recently coded.

It should open the possibility of large–scale molecular dynamics

using Gaussian Hermite functions as the models will benefit from

recent advances in algorithmic and in hybrid MPI/OPEN–MP par-

allelism that use new scalable strategies with gains going from 2

to 3 orders in magnitude in time within the present framework

[Lipparini et al. (2014)]. Overall, efforts will be devoted to propose

a scalable integrate methodology incorporating both distributed

Multipoles and Hermite Gaussian densities in popular packages

such as Amber and Tinker.
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Figure 1.1. Total intermolecular interaction energy for the canonical
water dimer calculated with the three GEM* models compared to ab
initio and AMOEBA

Figure 1.2. Timings for different water boxes for GEM* using the
model 1 parametrization. All times in seconds.
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Figure 1.3. Ab initio polarization energies (kcal/mol) for the Ca(II)-
H2O complex, computed using the CSOV procedure (blue), polarization
energy computed using: i) distributed polarizabilities+ab-initio fields
(grey),ii) distributed polarizabilities +GEM with (green) and iii) with-
out fields damping (red).
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Figure 1.4. Polarization (A), charge–transfer (B) and second or-
der induction (C) (pol+c–t) energies in poly–ligated Zn(II) com-
plexes calculated with RVS and S/G–1. The RVS charge–transfer
and induction energies are BSSE corrected. The complexes are as
follows: 1: [Zn(CH3S)3]

−, 2: [Zn(CH3S)4]
2−, 3: [Zn(imidazole)3]

2+,
4: [Zn(imidazole)4]

2+, 5: [Zn(H2O)6]
2+, 6: [Zn(H2O)5/1]

2+, 7:
[Zn(H2O)4/2]

2+, 8: cluster model for alcohol dehydrogenase active site
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Figure 1.5. Polarization (A), charge–transfer (B), second order in-
duction (C), and total intermolecular interaction energy (D) for
[Hg(H2O)2]

2+ as a function of the Hg–O distances.
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