Chapitre VII

Méthodes des fonctionnelles de la densité (DFT)

1. Principe des calculs DFT

1.2. L'énergie, fonctionnelle de la fonction d'onde et de la densité

Une fonction f d'une variable x associe un scalaire y = f(x) à tout scalaire x. Une fonctionnelle associe un scalaire x = F[f] à toute fonction f. Une intégrale définie de f(x), par exemple, est une fonctionnelle de f.

Dans les chapitres précédents, l'énergie apparaît comme une fonctionnelle de la fonction d'onde Φ normalisée selon :

$$E[\Phi] = \langle \Phi | \hat{H} | \Phi \rangle$$

Des théorèmes dus à Kohn, Sham et Hohenberg établissent les faits suivants.

- Un système à l'état fondamental, avec toutes ses propriétés observables, est entièrement déterminé par la donnée de sa densité électronique totale $\rho(x, y, z)$ en tout point. L'énergie, en particulier, est donc une fonctionnelle de la densité :

$$E = F[\rho]$$

- Cet état fondamental est tel que $\rho(x, y, z)$ minimise l'énergie. C'est l'équivalent pour la densité du théorème des variations pour les fonctions d'onde.

Calculer l'énergie à partir de la densité est a priori tentant, puisqu'on passe d'une fonction Φ à 3*n* variables d'espace à une fonction ρ à 3 variables. Le problème est qu'on ne connaît à peu près rien de *F*, hormis le fait qu'elle doit exister ...

1.2. Méthode de Kohn-Sham

L'énergie est décomposée comme suit en termes d'énergie cinétique T, d'énergie potentielle noyaux-électrons V_{Ne} et électrons-électrons V_{ee} , tous fonctionnelles de ρ .

$$E = T[\rho] + V_{Ne}[\rho] + V_{ee}[\rho]$$

Seul, le deuxième terme s'exprime aisément : la charge d'un volume élémentaire de coordonnée \mathbf{r}_1 étant $\rho(r_1)dv_1$, on a, avec les mêmes notations qu'en I.1 :

$$V_{Ne}[\rho] = \int_{\infty} \sum_{i,K} \frac{Z_K \rho(\vec{r}_i) dv_1}{R_{iK}}$$

Les deux autre fonctionnelles sont inconnues. Une partie de l'énergie électrons-électrons peut s'exprimer sous la forme de la répulsion de deux charges ρdv placées en deux points distants de r_{12} , soit :

$$J[\rho] = \iint_{\infty} \frac{\rho(\vec{r}_{1})\rho(\vec{r}_{2})}{r_{12}} dv_{1} dv_{2}$$

Mais ce terme, entre autres inconvénients, n'est pas corrélé, puisque le produit des densités de probabilité devrait être modulé en fonction de r_{12} . L'énergie d'échange (trou de Fermi) n'y est pas non plus incluse. En outre, tous les électrons participant à la densité totale, un même électrons a une certaine densité en r_1 et en r_2 , de sorte que cette relation le fait interagir avec lui-même (*self interaction*) !

Suivant la méthode de Kohn-Sham, la densité est exprimée le plus souvent en fonction d'un déterminant de Slater d'orbitales moléculaires (monoélectroniques). Ces *orbitales de Kohn-Sham* φ_i ne sont pas identiques aux orbitales HF : ce sont celle d'un système fictif d'électrons sans interaction, mais possédant la même densité que le système réel. Ceci permet d'exprimer sans approximation les termes V_{Ne} et *J*. L'énergie cinétique de ce système, puisque l'opérateur associé est monoélectronique est

$$T_{0} = -\frac{1}{2} \sum_{i} \left\langle \varphi_{i} \left| \Delta \right| \varphi_{i} \right\rangle.$$

Mais elle n'est pas égale à l'énergie cinétique du système réel. Tout « le reste » de l'énergie est regroupé dans un terme E_{xc} d'échange corrélation, soit finalement, en exprimant les densités en fonction des OM de Kohn-Sham (KS) :

$$E = -\frac{1}{2} \sum_{i} \langle \varphi_{i} | \Delta | \varphi_{i} \rangle$$

+
$$\sum_{i} \int_{\infty} \sum_{i,K} \frac{Z_{K} |\varphi_{i}(\vec{r}_{1})|^{2} dv_{1}}{R_{iK}}$$

+
$$\sum_{i,j>i} \iint_{\infty} |\varphi_{i}(\vec{r}_{1})|^{2} \frac{1}{r_{12}} |\varphi_{j}(\vec{r}_{2})|^{2} dv_{1} dv_{2}$$

+
$$E_{xc} [\rho(\vec{r})]$$

Le terme d'échange corrélation doit dépendre explicitement de r_1 et r_2 . Son expression représente la principale difficulté de la méthode, et de nombreuses solutions ont été proposées. Ensuite, on est dans une situation assez semblable à celle du SCF. Une énergie à minimiser est exprimée en fonction des orbitales KS, également inconnues a priori. Une méthode itérative est donc utilisée, à partir de fonctions d'essai fournit directement l'énergie corrélée.

2. Les principales méthodes de la DFT

Comme nous l'avons dit, il existe de nombreuses approximation de la fonctionnelle d'échange-corrélation ; elles sont désignées dans *Gaussian* par un groupe de lettres (souvent les initales des auteurs) dont la première partie désigne la méthode de calcul de l'échange et la deuxième la celle de la corrélation

2.1. L'approximation de la densité locale

Dans un seul cas modèle, celui du gaz uniforme d'électrons (correspondant assez bien aux électrons de la bande de conduction d'un métal), on connaît les expressions exactes ou avec une excellente approximation des termes d'échange et de corrélation respectivement. Dans cette approximation LDA (*Local Density Approximation*), la densité électronique est supposée localement uniforme et la fonctionnelle d'échange-corrélation est de la forme :

$$E_{XC}^{LDA}[\rho] = \int \rho(\vec{r}) \varepsilon_{XC}(\rho(\vec{r})) dv$$

Son extension aux systèmes sans contrainte de spin (*unrestricted*) prend le nom de LSD (*Local Spin Density*). La fonctionnelle d'échange-corrélation distingue les densités α et β sous la forme :

$$E_{XC}^{LSD}[\rho_{\alpha},\rho_{\beta}] = \int \rho(\vec{r}) \mathcal{E}_{XC}(\rho_{\alpha}(\vec{r}),\rho_{\beta}(\vec{r})) dv$$

Les mots-clés correspondant dans Gaussian est SVWN (échange : Slater ; corrélation : Vosko, Wilk, Nusair) et SVWN5. Ces méthodes fournissent souvent d'assez bonnes propriétés moléculaires (géométrie, fréquences) mais conduisent généralement à de très mauvaises données énergétiques telles que énergies de liaison etc...

2.2. Approximation du gradient généralisé (GGA) et fonctionnelles hybrides

Pour pallier les défauts des méthodes LDA et LSD, l'approximation du gradient généralisé considère des fonctions d'échange-corrélation dépendant non seulement de la densité en chaque point, mais aussi de son gradient, de la forme générale :

$$E_{XC}^{GGA}[\rho_{\alpha},\rho_{\beta}] = \int f(\rho_{\alpha},\rho_{\beta},\nabla\rho_{\alpha},\nabla\rho_{\beta})dv$$

La partie d'échange est en général la fonctionnelle de Becke (B), la partie de corrélation celle de Lee, Yang et Parr (LYP) ou celle de Perdew-Wang (PW) avec les variantes 86 et 91, d'où finalement les mots-clés BLYP, BPW86 et BPW91.

Enfin, il s'est avéré que dans les méthodes LDA, il y avait du bon à prendre, que d'autre part, comme on l'a vu, la méthode HF traitait correctement l'énergie d'échange, d'où des méthodes hybrides basées sur une combinaison empirique de ces énergies avec l'énergie GGA. La plus répandue est la méthode de « Becke à trois paramètres » (B3) ; ainsi, la fonctionnelle B3LYP utilise la fonctionnelle LYP pour la partie GGA. Les paramètres ont été ajustés pour reproduire les valeurs des énergies d'atomisation. La partie GGA peut être également les fonctionnelles PW91 et PW86.

2.3. Méthodes DFT et méthodes SCF-CI

Les méthodes DFT ont connu un succès foudroyant. On estime généralement que leur qualité équivaut à MP2, pour un coût un peu supérieur au HF. En particulier, la méthode B3LYP s'et avérée très efficace pour un grand nombre de systèmes organiques et inorganiques. Elles souffrent cependant d'un certain nombre de faiblesses par rapport aux méthodes HF et « post HF ».

i) On sait – du moins en théorie – ce qu'il faut faire pour tendre vers l'énergie exacte en HF-SCF-CI : augmenter la base et le nombre de configurations pour améliorer la fonction d'onde, puisqu'on opère avec un hamiltonien exact. Il n'en est pas de même avec les méthodes DFT limitées par l'approximation de la fonctionnelle d'échange-corrélation. Si les performances augmentent (généralement, mais pas toujours) avec la taille de la base, leur limite est atteinte plus rapidement qu'avec les méthodes HF-CI.

ii) L'énergie « absolue » n'a plus en DFT le caractère de critère qu'elle a avec les méthodes variationnelles classiques, toujours en raison de l'approximation sur la fonctionnelle E_{XC} et, pour les méthodes hybrides, le choix des paramètres empiriques. Cette énergie « absolue » peut varier dans de très larges limites selon la fonctionnelle utilisée. Ainsi, l'énergie de H peut-elle même être inférieure à sa valeur exacte de -0.5 ua.

iii) Le fait que des paramètres empiriques soient ajustés en fonction d'une grandeur physique particulière ne garantit pas des performances équivalentes lors du calcul d'autres grandeurs. Le vaste choix des fonctionnelles avec les possibilités de panachage qui sont offertes par les programmes comme *Gaussian* peuvent désorienter l'utilisateur. Si B3LYP est rarement totalement décevante, il faut souvent se reporter à la littérature ou se résoudre à des tâtonnements pour déterminer le meilleur choix dans un type de problème donné.

iv) Les systèmes non monodéterminantaux sont mal traités par la DFT bien que la corrélation soit censée être prise en compte, toujours en raison des approximations sur la fonctionnelle et parce que la fonction d'essai est un unique déterminant provenant d'un calcul HF (INDO, dans l'exemple suivant §3). La solution UHF avec guess=mix (brisure de symétrie) est cependant toujours envisageable, par exemple pour le calcul des biradicaux, avec les mêmes risques qu'en HF.

3. Exemples de calculs DFT avec Gaussian

3.1. Molécule H₂

Nous donnons avec deux fonctionnelles les longueurs de liaison, les fréquences et l'énergie totale de H_2 à comparer à celles du Tableau VI.1

Tableau 1. Distance d'équilibre *d*, fréquence de vibration v, énergie totale absolue *E* et durée du calcul *t* de H₂ à divers niveau de DFT (base cc-PVTZ).

-		$d(\text{\AA})$	$v(cm^{-1})$	D_0 (kJ/mol)	E(ua)	t(s)
-	SVWN	0.7641	4204	446	-1.1727	19
	B3LYP	0.7428	4421	434	-1.1800	21
-	Exp.	0.7416	4395	436	-1.1762	

L'approximation LDA (SVWN) donne une longueur de liaison très médiocre (moins bonne que HF). Les résultats B3LYP sont comparables ici aux meilleures méthodes SCF-IC, mais l'énergie totale est *inférieure* à l'énergie exacte. L'énergie de liaison est calculée à partir des énergies de H (SVWN :- 0.49611 B3LYP : -0.502) et après correction de l'énergie vibrationnelle (cf. V.1).

3.2. Molécule F₂

Nous avions remarqué que les calculs HF-SCF ne rendaient même pas compte de la cohésion de la molécule. De fait il s'agit d'un test difficile pour les méthodes théoriques, qui peinent à traiter correctement les liaisons entre atomes très électronégatifs F-F, O-O, O₃ etc. Ces systèmes, où les électrons sont confinés près des noyaux sont naturellement très sensibles à la corrélation. Le Tableau 2 rassemble les résultats obtenus avec diverses méthodes DFT et ab initio. L'optimisation a été effectuée avec une longueur de liaison initiale de 1.4 Å.

Tableau 2. Distance d'équilibre *d*, fréquence de vibration v, énergie de liaison D_0 (corigée de l'énergie de vibration) et durée du calcul *t* de H₂ à divers niveau de DFT (base cc-PVTZ).

	$d(\text{\AA})$	$\nu(\text{cm}^{-1})$	D_0 (kJ/mol)	<i>t</i> (s)
SVWN	1.383	1071	455	180
B3LYP	1.398	1049	165.3	240
MP2	1.398	1015	161.7	630
CCSD(T)	1.416	920	151.6	3000
Exp.	1.418	892	150.5	

La fonctionnelle LDA donne des valeurs acceptables de d et v, mais une erreur de 300% sur l'énergie de liaison. On observe des performances comparables des méthodes B3LYP et MP2, avec ici un léger avantage de la seconde mais avec un coût bien moindre de la DFT. Enfin, les résultats CCSD(T) montrent à nouveau que l'on dispose d'un moyen de calcul d'une grande fiabilité, malheureusement fort coûteux.

3.2 Exemple de H₂O ; orbitales KS et orbitales SCF

On reporte ci-dessous les extraits significatifs d'un fichier de résultat B3LYP/6-31G** sans optimisation (la géométrie expérimentale a été utilisée).

6-31G**/B3LYP,pop=full ,gfinput test, _____ *** H2O **** _____ Symbolic Z-matrix: Charge = 0 Multiplicity = 1h 1 0.958 2 0.958 1 104.5 0 h Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------1 1 Н 2 2 0 1 .958000(1) 3 3 H 2 .958000(2) 1 104.500(3) _____ _____ _____ _____ Distance matrix (angstroms): 1 2 3 1 H .000000 2 O .958000 .000000 3 H 1.514961 .958000 .000000 Interatomic angles: H1-O2-H3=104.5 Stoichiometry H2O Framework group C2V[C2(O),SGV(H2)] Deg. of freedom2Full point groupC2VNOpLargest Abelian subgroupC2VNOpLargest concise Abelian subgroupC2NOp Standard orientation: _____ CenterAtomicAtomicCoordinates (Angstroms)NumberNumberTypeXYZ _____

 1
 1
 0
 .000000
 .757481
 -.469203

 2
 8
 0
 .000000
 .000000
 .117301

 3
 1
 0
 .000000
 -.757481
 -.469203

 _____ Rotational constants (GHZ): 820.7394959 436.9774969 285.1553192 Isotopes: H-1, O-16, H-1 Standard basis: 6-31G(d,p) (6D, 7F) There are 12 symmetry adapted basis functions of A1 symmetry.

P. Chaquin (LCT-UPMC) Pratique de la Chimie Théorique

There are 2 symmetry adapted basis functions of A2 symmetry.

There are4 symmetry adapted basis functions of B1symmetry.There are7 symmetry adapted basis functions of B2symmetry. Crude estimate of integral set expansion from redundant integrals=1.137. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 25 basis functions 42 primitive gaussians 5 beta electrons 5 alpha electrons nuclear repulsion energy 9.1873342402 Hartrees. One-electron integrals computed using PRISM. NBasis= 25 RedAO= T NBF= 12 2 4 7 NBsUse= 25 1.00D-04 NBFU= 12 2 4 7 Projected INDO Guess. Initial guess orbital symmetries: Occupied (A1) (A1) (B2) (A1) (B1) Virtual (A2) (A2) (B1) (B1) (B1) (B2) (B2) (B2) (B2) (B2)
 SCF Done:
 E(RB+HF-LYP)
 =
 -76.4196291356
 A.U. after
 5 cycles

 Convg
 .2978D-04
 -V/T =
 2.0075
 S**2 = .0000 Population analysis using the SCF density. Orbital Symmetries: Occupied (A1) (A1) (B2) (A1) (B1) (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A1) (A2) (A1) Virtual (B1) (A1) (B2) (B2) (A2) (B1) (A1) (A1) (B2) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -19.13632 -.99971 -.51890 -.36988 .29216 .06749 Alpha virt. eigenvalues --.15403 .76240 .80903 .89156 Alpha virt. eigenvalues --.89392 1.01644 1.17462 1.52866 1.54346 Alpha virt. eigenvalues --1.64652 2.24797 2.27140 2.46629 2.65389 Alpha virt. eigenvalues --2.67032 3.04327 3.32200 3.53777 3.70153 Molecular Orbital Coefficients 3 2 1 4 5 (A1) -- O (A1) -- O (B2) -- O (A1) -- O (B1) -- O EIGENVALUES ---19.13632 -.99971 -.51890 -.36988 -.29216 .00012 .15380 .24532 -.14272 .00000 11 H 1S .00000 2 2S -.00117 .01751 .15513 -.11407 .00000 .00000 3 3PX .00000 .00000 .02112 .00030 4 3PY -.02133 -.00620 .01009 .00000 5 3PZ -.00018 .01243 .01585 .01086 .00000 .99288 62 0 1S -.21047 .00000 -.08728 .00000 .02624 .46679 .00000 7 2S .17341 .00000 8 2PX .00000 .00000 .00000 .00000 .64364 .00000 9 2PY .00000 .00000 .51438 .00000 -.00126 -.11952 .55442 10 2PZ .00000 .00000 .01037 .00000 .41538 11 3S .41984 .00000 .00000 .00000 .00000 .00000 .00000 .24513 .00000 -.04048 .00000 .36619 12 3PX .49462 13 3PY .00000 .00000 14 3PZ -.00024 .00000

15 16 17 18 19 20 21 3 22 23 24 25	Н	4xx 4yy 4zz 4xy 4xz 4yz 1s 2s 3px 3py 3pz	00776 00748 00755 .00000 .00000 .00000 .00012 00117 .00000 00030 00018 6	00804 .00000 .00278 .00000 .00000 .15380 .01751 .00000 .02133 .01243 7	.00000 .00000 .00000 .00000 02880 24532 15513 .00000 00620 01585 8	00126 00437 04623 .00000 .00000 14272 11407 .00000 01009 .01086 9	.00000 .00000 .00000 -02910 .00000 .00000 .00000 .02112 .00000 .00000 .00000
			(A1)V	(B2)V	(B2)V	(A1)V	(BI)V
E	IGENV	ALUES	.06749	.15403	.76240	.80903	.89156
1 1	Н	1S	08858	.10022	76934	.55790	.00000
2		2S	97758	1.30226	.77702	58744	.00000
3		3PX	.00000	.00000	.00000	.00000	00012
4		3PY	00708	00326	05124	.16756	.00000
5		3PZ	.00433	00338	.10139	06778	.00000
62	0	1S	10183	.00000	.00000	.03845	.00000
7		2S	.11716	.00000	.00000	07060	.00000
8		2PX	.00000	.00000	.00000	.00000	95973
9		2PY	.00000	40800	.20198	.00000	.00000
10		2PZ	27109	.00000	.00000	.65107	.00000
11		3S	1.27969	.00000	.00000	.19898	.00000
12		3PX	.00000	.00000	.00000	.00000	1.03848
13		3PY	.00000	76505	.18475	.00000	.00000
14		3PZ	46644	.00000	.00000	56185	.00000
15		4XX	05839	.00000	.00000	10398	.00000
16		4YY	05240	.00000	.00000	.27372	.00000
17		4 Z Z	03339	.00000	.00000	.09703	.00000
18		4XY	.00000	.00000	.00000	.00000	.00000
19		4XZ	.00000	.00000	.00000	.00000	01586
20		4YZ	.00000	.01950	.26826	.00000	.00000
21 3	Н	1S	08858	10022	.76934	.55790	.00000
22		2S	97758	-1.30226	77702	58744	.00000
23		3PX	.00000	.00000	.00000	.00000	00012
24		3PY	.00708	00326	05124	16756	.00000
25		3PZ	.00433	.00338	10139	06778	.00000

Gross orbital populations:

				1
1	1	Н	1S	.49836
2			2S	.15740
3			3PX	.01090
4			3PY	.01522
5			3PZ	.01313
6	2	0	1S	1.99263
7			2S	.89731
8			2PX	1.15568
9			2PY	.81835
10			2PZ	.95143
11			3S	.94545
12			3PX	.82023
13			3PY	.41832
14			3PZ	.61890
15			4XX	01098
16			4YY	00191
17			4 Z Z	00989
18			4XY	.00000
19			4XZ	.00229

```
20 4YZ
                           .01217
                            .49836
 21 3 H 1S
 22 2S
                             .15740
                            .01090
            3PX
 23
 24
           3PY
3PZ
                             .01522
 25
                              .01313
         Condensed to atoms (all electrons):

        1
        2
        3

        1
        H
        .436484
        .287223
        -.028695

        2
        O
        .287223
        8.035527
        .287223

        3
        H
        -.028695
        .287223
        .436484

Total atomic charges:
                1
 1 H
           .304987
        -.609973
 2 0
 3 Н
            .304987
Sum of Mulliken charges= .00000
_____
Dipole moment (Debye):
X= .0000 Y= .0000 Z= -2.0291 Tot= 2.0291
```

Les résultats sont donnés sous une forme très semblable à celle des calculs HF. Les OM sont celles de Kohn-Sham, et les populations, en particulier, les charges atomiques totales sont calculées à partir de ces OM. On s'est penché sur la question de la signification physique des OM de KS qui ne bénéficient pas, comme les OM HF, d'un équivalent du théorème de Koopmans. Leurs coefficients ne diffèrent pas radicalement de ceux de ces dernières comme on peut le constater dans l'extrait suivant.

Orbitales HF de H₂O (même base, même géométrie)

```
SCF Done: E(RHF) = -76.0231146722 A.U. after 6 cycles

Convg = .2345D-04 -V/T = 2.0028

S**2 = .0000
Population analysis using the SCF density.
*****
Orbital Symmetries:
     Occupied (A1) (A1) (B2) (A1) (B1)
     Virtual (A1) (B2) (B2) (A1) (A1) (B1) (B2) (A1) (A2) (A1)
             (B1) (A1) (B2) (B2) (A2) (B1) (A1) (A1) (B2) (A1)
 The electronic state is 1-A1.
Alpha occ. eigenvalues -- -20.56076 -1.33993 -.70303 -.56856
                                                        _
.49711
Alpha virt. eigenvalues -- .21195 .30452 1.00392 1.08596
1.13269
Alpha virt. eigenvalues -- 1.16889 1.29477 1.41432 1.80363
1.81753
```

Alpha virt. eigenvalues -- 1.92532 2.56984 2.57566 2.80632 2.97915 Alpha virt. eigenvalues -- 2.98966 3.37617 3.70872 3.92563 4.10842 Molecular Orbital Coefficients 1 2 3 4 5 (A1)--0 (A1)--0 (A1) -- O (B2)--0 (B1)--0 EIGENVALUES ---20.56076 -1.33993 -.70303 -.56856 -.49711 1 1 H 1S .00005 .14447 .24061 -.14505 .00000 2 2S -.00032 .01348 -.09220 .13237 .00000 3 3PX .00000 .00000 .00000 .00000 .02038 -.01120 4 3PY -.02140 .00034 .01503 .00000 -.00024 5 .01882 3PZ .01344 .00581 .00000 6 2 0 1S .99468 -.21064 .00000 -.07304 .00000 7 2S .02114 .47309 .00000 .16294 .00000 8 2PX .00000 .00000 .00000 .00000 .63872 9 .00000 2PY .00000 .50160 .00000 .00000 -.00152 10 2PZ -.08412 .00000 .55360 .00000 11 3S .00421 .42293 .00000 .33715 .00000 12 3PX .00000 .00000 .00000 .00000 .50047 13 3PY .00000 .00000 .27736 .00000 .00000 14 3pz .00022 -.03254 .00000 .39010 .00000 15 4XX -.00391 .00135 .00000 .00969 .00000 16 4YY -.00379 .00644 .00000 .00045 .00000 .00846 -.00380 .00000 -.03731 .00000 17 4ZZ .00000 .00000 .00000 .00000 18 4XY .00000 .00000 .00000 .00000 .00000 19 4XZ -.02759 .00000 20 4YZ .00000 -.03369 .00000 .00000 .00005 21 3 -.24061 .00000 H 1S .14447 -.14505 .01348 -.09220 22 -.00032 -.13237 .00000 2S .00000 .00000 .00000 .00000 23 3PX .02038 -.00034 .02140 -.01120 .00000 3PY -.01503 24 25 3PZ -.00024 .01344 -.01882 .00581 .00000 6 7 8 9 10 (A1)--V (B2)--V (B2)--V (A1)--V (A1)--V .21195 EIGENVALUES --.30452 1.00392 1.08596 1.13269 .05453 .77059 .58817 1 1 H 1S -.05482 .43775 -.62314 2 2S -1.04506 1.41348 -.53446 -.38696 3 .00000 .00000 .00000 .00000 3PX .00000 4 3PY .00374 -.01495 .05341 .19717 -.00106 5 3PZ -.00172 .00837 -.10495 -.07352 .03452 62 0 1S -.10057 .00000 .00000 .04814 -.004847 .05540 .00000 .00000 -.09410 -.90867 2S 8 .00000 .00000 .00000 .00000 2PX .00000 9 .00000 2PY -.33027 -.14772 .00000 .00000 10 2PZ -.21611 .00000 .00000 .58769 -.54314 11 3S 1.42089 .00000 .00000 .13527 1.63338 .00000 .00000 12 3PX .00000 .00000 .00000 13 3PY .00000 -.85662 -.35577 .00000 .00000 14 3pz -.51286 .00000 .00000 -.44114 .77293 15 -.07260 .00000 .00000 -.13161 -.36497 4XX 16 -.05359 .00000 .00000 .30940 4YY -.23387 17 4ZZ-.04204 .00000 .00000 .09805 -.33080 .00000 18 4XY .00000 .00000 .00000 .00000 19 .00000 .00000 .00000 .00000 4XZ .00000 20 4YZ .00000 .03720 -.27414 .00000 .00000 21 3 -.77059 H 1S -.05482 -.05453 .58817 .43775 22 2S -1.04506-1.41348.62314 -.53446 -.38696 23 3PX .00000 .00000 .00000 .00000 .00000 24 3PY -.00374 -.01495 .05341 -.19717 .00106 25 3PZ -.00172 -.00837 .10495 -.07352 .03452

P. Chaquin (LCT-UPMC) Pratique de la Chimie Théorique

```
Total atomic charges:

1

1 H .336947

2 O -.673894

3 H .336947
```

La représentation graphique manuelle des OM est rendue difficile par le dédoublement de la couche de valence et le recours à un programme de dessin s'avère utile. La Fig. 1 montre isodensité 0.15 ua de l'orbitale N° 4 ($3a_1$), « paire libre » hybridée sp de l'oxygène, avec cependant un caractère liant notable, dans les deux cas HF et KS. Il est difficile de déceler une différence entre ces deux schémas. Remarquons cependant que dans le cas présent les OM sont largement déterminées par la symétrie.

En revanche, les énergies sont très différentes. On peut constater que l'écart HO-BV est de 0.709 ua au niveau HF contre 0.359 ua au niveau DFT. Si on admet que cet écart devrait être du même ordre de grandeur que la première énergie d'excitation, on remarque que la valeur HF est généralement beaucoup trop grande alors que la valeur DFT est trop faible. Pour un raisonnement qualitatif sur les interactions frontalières, il suffira de prendre garde à comparer des énergies obtenues par la même méthode.

Fig. 1. Orbitale SCF et KS 3a₁ de H₂O

Une différence notable existe entre les charges de Mulliken qui ne sont cependant pas radicalement différentes : -0.61 (B3LYP) contre -0.67 (SCF) pour l'atome d'hydrogène. En pratique donc, les OM de KS et les populations pourront être utilisées la plupart du temps dans les mêmes conditions que les orbitales HF.